zetviel/build.zig

225 lines
11 KiB
Zig

const std = @import("std");
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) !void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
var target_query = b.standardTargetOptionsQueryOnly(.{});
const paths = try checkNix(b, &target_query);
const reload_discovered_native_paths = target_query.dynamic_linker.len != 0;
const target = b.resolveTargetQuery(target_query);
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
const lib = b.addStaticLibrary(.{
.name = "zetviel",
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = b.path("src/root.zig"),
.target = target,
.optimize = optimize,
});
// This declares intent for the library to be installed into the standard
// location when the user invokes the "install" step (the default step when
// running `zig build`).
b.installArtifact(lib);
const exe = b.addExecutable(.{
.name = "zetviel",
.root_source_file = b.path("src/main.zig"),
.target = target,
.optimize = optimize,
});
configure(exe, paths, reload_discovered_native_paths);
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
// Creates a step for unit testing. This only builds the test executable
// but does not run it.
const lib_unit_tests = b.addTest(.{
.root_source_file = b.path("src/root.zig"),
.target = target,
.optimize = optimize,
});
configure(exe, paths, reload_discovered_native_paths);
const run_lib_unit_tests = b.addRunArtifact(lib_unit_tests);
const exe_unit_tests = b.addTest(.{
.root_source_file = b.path("src/main.zig"),
.target = target,
.optimize = optimize,
});
configure(exe_unit_tests, paths, reload_discovered_native_paths);
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&run_lib_unit_tests.step);
test_step.dependOn(&run_exe_unit_tests.step);
}
fn configure(compile: *std.Build.Step.Compile, paths: std.zig.system.NativePaths, reload_paths: bool) void {
compile.linkLibC();
compile.linkSystemLibrary("notmuch");
// These are only needed if we are in nix develop shell
if (!reload_paths) return;
for (paths.lib_dirs.items) |dir|
compile.addLibraryPath(.{ .cwd_relative = dir });
for (paths.include_dirs.items) |dir|
compile.addIncludePath(.{ .cwd_relative = dir });
for (paths.rpaths.items) |dir|
compile.addRPath(.{ .cwd_relative = dir });
}
fn checkNix(b: *std.Build, target_query: *std.Target.Query) !std.zig.system.NativePaths {
// All linux-specific stuff should be in here
if (@import("builtin").os.tag != .linux or !(target_query.os_tag == null or target_query.os_tag.? == .linux)) {
std.log.err("Only linux host and target builds supported right now", .{});
return error.NotImplemented;
}
// Capture the natively detected paths for potential future use
const native_result = b.resolveTargetQuery(target_query.*);
const paths = try std.zig.system.NativePaths.detect(b.allocator, native_result.result);
const nix_develop_bintools = std.posix.getenv("NIX_BINTOOLS");
if (nix_develop_bintools) |bintools| {
// std.debug.print("\nDetected nix bintools\n", .{});
// We'll capture the interpreter used in $NIX_BINTOOLS/bin/size
// We expect this to be a symlink to a native elf executable
// readlink $NIX_BINTOOLS/bin/size
var pathbuf: [std.posix.PATH_MAX]u8 = undefined;
const elf_path = try std.posix.readlink(
try std.fs.path.join(b.allocator, &[_][]const u8{
bintools,
"bin",
"size",
}),
&pathbuf,
);
// Setting the dynamic linker (necessary to avoid dll hell) will put
// zig into a non-native mode, and will therefore ignore all the native
// paths. We'll put these back from the values captured above in
// our configure function
target_query.dynamic_linker = try getDynamicLinker(elf_path);
}
return paths;
}
fn getDynamicLinker(elf_path: []const u8) !std.Target.DynamicLinker {
// read the dynamic linker from this
const elf_file = try std.fs.openFileAbsolute(elf_path, .{});
defer elf_file.close();
var file_contents: [1024 * 1024]u8 = undefined; // binary is expected to be appox 40k
const read = try elf_file.readAll(&file_contents);
if (read == 1024 * 1024) {
std.log.err("file too big!", .{});
return error.FileTooBig;
}
if (!std.mem.eql(u8, file_contents[0..4], &[_]u8{ 0x7F, 0x45, 0x4C, 0x46 })) {
std.log.err("file not an ELF!", .{});
return error.FileNotElf;
}
if (!std.mem.eql(u8, file_contents[4..9], &[_]u8{ 0x02, 0x01, 0x01, 0x00, 0x00 })) {
std.log.err("ELF header not expected (64 bit, LSB, version 1, SYSV ABI, ABI version 0)", .{});
std.log.err("It's possible the code will work with unexpected header...might loosen this restriction and see what happens", .{});
std.log.err("(32 bit will require code change)", .{});
return error.FileNotExpectedElf;
}
if (file_contents[0x10] != 0x02) {
std.log.err("ELF not executable", .{});
return error.FileNotExpectedElf;
}
if (file_contents[0x14] != 0x01) {
std.log.err("ELF not version 1", .{});
return error.FileNotExpectedElf;
}
// Section header table
const e_shoff = std.mem.littleToNative(u64, @as(*u64, @ptrFromInt(@intFromPtr(file_contents[0x28 .. 0x29 + 8]))).*); // E8 9D 00 00 00 00 00 00
// Number of sections
const e_shnum = std.mem.littleToNative(u16, @as(*u16, @ptrFromInt(@intFromPtr(file_contents[0x3c .. 0x3d + 2]))).*); // 1d
// Index of section header that contains section header names
const e_shstrndx = std.mem.littleToNative(u16, @as(*u16, @ptrFromInt(@intFromPtr(file_contents[0x3e .. 0x3f + 2]))).*); // 1c
// Beginning of section 0x1c (28) that contains header names
const e_shstroff = e_shoff + (64 * e_shstrndx); // 0xa4e8
const shstrtab_contents = file_contents[e_shstroff .. e_shstroff + 1 + (e_shnum * 64)];
// Offset for my set of null terminated strings
const shstrtab_sh_offset = std.mem.littleToNative(u64, @as(*u64, @ptrFromInt(@intFromPtr(shstrtab_contents[0x18 .. 0x19 + 8]))).*); // 0x9cec
// Total size of section
const shstrtab_sh_size = std.mem.littleToNative(u64, @as(*u64, @ptrFromInt(@intFromPtr(shstrtab_contents[0x20 .. 0x21 + 8]))).*); // 250
// std.debug.print("e_shoff: {x}, e_shstrndx: {x}, e_shstroff: {x}, e_shnum: {x}, shstrtab_sh_offset: {x}, shstrtab_sh_size: {}\n", .{ e_shoff, e_shstrndx, e_shstroff, e_shnum, shstrtab_sh_offset, shstrtab_sh_size });
const shstrtab_strings = file_contents[shstrtab_sh_offset .. shstrtab_sh_offset + 1 + shstrtab_sh_size];
var interp: ?[]const u8 = null;
for (0..e_shnum) |shndx| {
// get section offset. Look for type == SHT_PROGBITS, then go fetch name
const sh_off = e_shoff + (64 * shndx);
const sh_contents = file_contents[sh_off .. sh_off + 1 + 64];
const sh_type = std.mem.littleToNative(u16, @as(*u16, @ptrFromInt(@intFromPtr(sh_contents[0x04 .. 0x05 + 2]))).*);
if (sh_type != 0x01) continue;
// This is an offset to the null terminated string in our string content
const sh_name_offset = std.mem.littleToNative(u16, @as(*u16, @ptrFromInt(@intFromPtr(sh_contents[0x00 .. 0x01 + 2]))).*);
const sentinel = std.mem.indexOfScalar(u8, shstrtab_strings[sh_name_offset..], 0);
if (sentinel == null) {
std.log.err("Invalid ELF file", .{});
return error.InvalidElfFile;
}
const sh_name = shstrtab_strings[sh_name_offset .. sh_name_offset + sentinel.?];
// std.debug.print("section name: {s}\n", .{sh_name});
if (std.mem.eql(u8, ".interp", sh_name)) {
// found interpreter
const interp_offset = std.mem.littleToNative(u64, @as(*u64, @ptrFromInt(@intFromPtr(sh_contents[0x18 .. 0x19 + 8]))).*); // 0x9218
const interp_size = std.mem.littleToNative(u64, @as(*u64, @ptrFromInt(@intFromPtr(sh_contents[0x20 .. 0x21 + 8]))).*); // 2772
// std.debug.print("Found interpreter at {x}, size: {}\n", .{ interp_offset, interp_size });
interp = file_contents[interp_offset .. interp_offset + 1 + interp_size];
// std.debug.print("Interp: {s}\n", .{interp});
}
}
if (interp == null) {
std.log.err("Could not locate interpreter", .{});
return error.CouldNotLocateInterpreter;
}
var dl = std.Target.DynamicLinker{ .buffer = undefined, .len = 0 };
dl.set(interp);
return dl;
}