initial commit

This commit is contained in:
Emil Lerch 2025-03-31 15:45:23 -07:00
parent 2a1d86e1df
commit c2a99972be
Signed by: lobo
GPG key ID: A7B62D657EF764F8
7 changed files with 290 additions and 0 deletions

8
.envrc Normal file
View file

@ -0,0 +1,8 @@
# vi: ft=sh
# shellcheck shell=bash
if ! has zvm_direnv_version || ! zvm_direnv_version 2.0.0; then
source_url "https://git.lerch.org/lobo/zvm-direnv/raw/tag/2.0.0/direnvrc" "sha256-8Umzxj32hFU6G0a7Wrq0KTNDQ8XEuje2A3s2ljh/hFY="
fi
use zig 0.14.0

21
LICENSE Normal file
View file

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 Emil Lerch
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

0
README.md Normal file
View file

116
build.zig Normal file
View file

@ -0,0 +1,116 @@
const std = @import("std");
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// This creates a "module", which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Every executable or library we compile will be based on one or more modules.
const lib_mod = b.createModule(.{
// `root_source_file` is the Zig "entry point" of the module. If a module
// only contains e.g. external object files, you can make this `null`.
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = b.path("src/root.zig"),
.target = target,
.optimize = optimize,
});
// We will also create a module for our other entry point, 'main.zig'.
const exe_mod = b.createModule(.{
// `root_source_file` is the Zig "entry point" of the module. If a module
// only contains e.g. external object files, you can make this `null`.
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = b.path("src/main.zig"),
.target = target,
.optimize = optimize,
});
// Modules can depend on one another using the `std.Build.Module.addImport` function.
// This is what allows Zig source code to use `@import("foo")` where 'foo' is not a
// file path. In this case, we set up `exe_mod` to import `lib_mod`.
exe_mod.addImport("syncthing_events_lib", lib_mod);
// Now, we will create a static library based on the module we created above.
// This creates a `std.Build.Step.Compile`, which is the build step responsible
// for actually invoking the compiler.
const lib = b.addLibrary(.{
.linkage = .static,
.name = "syncthing_events",
.root_module = lib_mod,
});
// This declares intent for the library to be installed into the standard
// location when the user invokes the "install" step (the default step when
// running `zig build`).
b.installArtifact(lib);
// This creates another `std.Build.Step.Compile`, but this one builds an executable
// rather than a static library.
const exe = b.addExecutable(.{
.name = "syncthing_events",
.root_module = exe_mod,
});
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
// Creates a step for unit testing. This only builds the test executable
// but does not run it.
const lib_unit_tests = b.addTest(.{
.root_module = lib_mod,
});
const run_lib_unit_tests = b.addRunArtifact(lib_unit_tests);
const exe_unit_tests = b.addTest(.{
.root_module = exe_mod,
});
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&run_lib_unit_tests.step);
test_step.dependOn(&run_exe_unit_tests.step);
}

86
build.zig.zon Normal file
View file

@ -0,0 +1,86 @@
.{
// This is the default name used by packages depending on this one. For
// example, when a user runs `zig fetch --save <url>`, this field is used
// as the key in the `dependencies` table. Although the user can choose a
// different name, most users will stick with this provided value.
//
// It is redundant to include "zig" in this name because it is already
// within the Zig package namespace.
.name = .syncthing_events,
// This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication.
.version = "0.0.0",
// Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the
// package is first created, and then *never changes*. This allows
// unambiguous detection of one package being an updated version of
// another.
//
// When forking a Zig project, this id should be regenerated (delete the
// field and run `zig build`) if the upstream project is still maintained.
// Otherwise, the fork is *hostile*, attempting to take control over the
// original project's identity. Thus it is recommended to leave the comment
// on the following line intact, so that it shows up in code reviews that
// modify the field.
.fingerprint = 0x7ba932b0ae7825b, // Changing this has security and trust implications.
// Tracks the earliest Zig version that the package considers to be a
// supported use case.
.minimum_zig_version = "0.14.0",
// This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity.
.dependencies = .{
// See `zig fetch --save <url>` for a command-line interface for adding dependencies.
//.example = .{
// // When updating this field to a new URL, be sure to delete the corresponding
// // `hash`, otherwise you are communicating that you expect to find the old hash at
// // the new URL. If the contents of a URL change this will result in a hash mismatch
// // which will prevent zig from using it.
// .url = "https://example.com/foo.tar.gz",
//
// // This is computed from the file contents of the directory of files that is
// // obtained after fetching `url` and applying the inclusion rules given by
// // `paths`.
// //
// // This field is the source of truth; packages do not come from a `url`; they
// // come from a `hash`. `url` is just one of many possible mirrors for how to
// // obtain a package matching this `hash`.
// //
// // Uses the [multihash](https://multiformats.io/multihash/) format.
// .hash = "...",
//
// // When this is provided, the package is found in a directory relative to the
// // build root. In this case the package's hash is irrelevant and therefore not
// // computed. This field and `url` are mutually exclusive.
// .path = "foo",
//
// // When this is set to `true`, a package is declared to be lazily
// // fetched. This makes the dependency only get fetched if it is
// // actually used.
// .lazy = false,
//},
},
// Specifies the set of files and directories that are included in this package.
// Only files and directories listed here are included in the `hash` that
// is computed for this package. Only files listed here will remain on disk
// when using the zig package manager. As a rule of thumb, one should list
// files required for compilation plus any license(s).
// Paths are relative to the build root. Use the empty string (`""`) to refer to
// the build root itself.
// A directory listed here means that all files within, recursively, are included.
.paths = .{
"build.zig",
"build.zig.zon",
"src",
// For example...
//"LICENSE",
//"README.md",
},
}

46
src/main.zig Normal file
View file

@ -0,0 +1,46 @@
//! By convention, main.zig is where your main function lives in the case that
//! you are building an executable. If you are making a library, the convention
//! is to delete this file and start with root.zig instead.
pub fn main() !void {
// Prints to stderr (it's a shortcut based on `std.io.getStdErr()`)
std.debug.print("All your {s} are belong to us.\n", .{"codebase"});
// stdout is for the actual output of your application, for example if you
// are implementing gzip, then only the compressed bytes should be sent to
// stdout, not any debugging messages.
const stdout_file = std.io.getStdOut().writer();
var bw = std.io.bufferedWriter(stdout_file);
const stdout = bw.writer();
try stdout.print("Run `zig build test` to run the tests.\n", .{});
try bw.flush(); // Don't forget to flush!
}
test "simple test" {
var list = std.ArrayList(i32).init(std.testing.allocator);
defer list.deinit(); // Try commenting this out and see if zig detects the memory leak!
try list.append(42);
try std.testing.expectEqual(@as(i32, 42), list.pop());
}
test "use other module" {
try std.testing.expectEqual(@as(i32, 150), lib.add(100, 50));
}
test "fuzz example" {
const Context = struct {
fn testOne(context: @This(), input: []const u8) anyerror!void {
_ = context;
// Try passing `--fuzz` to `zig build test` and see if it manages to fail this test case!
try std.testing.expect(!std.mem.eql(u8, "canyoufindme", input));
}
};
try std.testing.fuzz(Context{}, Context.testOne, .{});
}
const std = @import("std");
/// This imports the separate module containing `root.zig`. Take a look in `build.zig` for details.
const lib = @import("syncthing_events_lib");

13
src/root.zig Normal file
View file

@ -0,0 +1,13 @@
//! By convention, root.zig is the root source file when making a library. If
//! you are making an executable, the convention is to delete this file and
//! start with main.zig instead.
const std = @import("std");
const testing = std.testing;
pub export fn add(a: i32, b: i32) i32 {
return a + b;
}
test "basic add functionality" {
try testing.expect(add(3, 7) == 10);
}