bl616-usb-cdc-acm/cdc_acm_usb_interface.c

341 lines
11 KiB
C

#include "usbd_core.h"
#include "usbd_cdc.h"
/*!< endpoint address */
/* Transmissions Device->Host (otherwise known as "IN" in these constants */
/* Need to be >= 0x80 to be considered a transmission. See */
/* https://github.com/sakumisu/CherryUSB/blob/d7c0add7ef58cfa711cf152c088a7e1c65fa5886/core/usbd_core.c#L1230 */
/*
* Endpoint Address
* Bits 0..3b Endpoint Number.
* Bits 4..6b Reserved. Set to Zero
* Bits 7 Direction 0 = Out, 1 = In (Ignored for Control Endpoints)
*
* So, each endpoint needs to have a unique number in 0..3, so a total of 16
* endpoints. Bit 7 is directional. So 0x00-0x0F is outbound, and 0x80-0x8f is
* inbound, and everything must be unique in the last nibble. At least that is
* my understanding at this point.
*/
#define CDC_IN_EP 0x81
#define CDC_OUT_EP 0x02
#define CDC_INT_EP 0x85
#define CDC_IN_DBG_EP 0x83
#define CDC_OUT_DBG_EP 0x04
#define CDC_INT_DBG_EP 0x86
#define USBD_VID 0x10B0 /* Vendor Id */
#define USBD_PID 0xDEAD /* Product Id */
#define USBD_MAX_POWER 100
#define USBD_LANGID_STRING 1033 /* US English */
/*!< config descriptor size */
#define USB_CONFIG_SIZE (9 + CDC_ACM_DESCRIPTOR_LEN * 2)
/* USB Device descriptors. If you don't know what you're doing, read this
* first: https://beyondlogic.org/usbnutshell/usb5.shtml
*
* We have one and only one Device Descriptor that describes the physical device
* But what linux is calling a "device" has nothing to do with that. I believe
* this varies by the type of USB device. For USB CDC ACM, we are looking at
* each "Interface association" as its own Linux device (as determined by
* /dev/ttyACMx).
*
* From Device Descriptor, we'll have any number of "configurations", which
* typically describes different power profiles, etc. Typically there is only
* one configuration, but it doesn't need to be that way.
*
* Within the configuraiton, we have various interfaces. Using the macro
* CDC_ACM_DESCRIPTOR_INIT provided by CherryUSB will provide us with:
*
* * Interface Association to describe two interfaces ("in" and "out")
* * Interface for outbound traffic
* * Interface for inbound traffic
*
* I believe that the CDC_INT_* constants above refer to the interface association
*
* To actually communicate, we need to setup endpoints, which are associated
* with the interfaces above. So the full heirarchy is:
*
* Device -1:n- Configuration -1:n- Interface -1:n- Endpoint
*
* Where for typical, CDC ACM usage is:
*
* Device -1:1- Configuration -1:n- Interface (2 per what Linux calls device) -1:1- Endpoint
*
*/
/*!< global descriptor */
static const uint8_t cdc_descriptor[] = {
USB_DEVICE_DESCRIPTOR_INIT(USB_2_0, 0xEF, 0x02, 0x01, USBD_VID, USBD_PID, 0x0100, 0x01),
USB_CONFIG_DESCRIPTOR_INIT(USB_CONFIG_SIZE, 0x04, 0x01, USB_CONFIG_BUS_POWERED, USBD_MAX_POWER),
/* ^ - Number of interfaces. We need a seperate in and out channel for each virtual */
/* So for each /dev/ttyACMx, add 2 to this number */
/* */
/* The last paramater is the string index for this interface. Linux does not */
/* seem to report that anywhere, but maybe Windows does? */
CDC_ACM_DESCRIPTOR_INIT(0x00, CDC_INT_EP, CDC_OUT_EP, CDC_IN_EP, 0x02),
CDC_ACM_DESCRIPTOR_INIT(0x02, CDC_INT_DBG_EP, CDC_OUT_DBG_EP, CDC_IN_DBG_EP, 0x02),
///////////////////////////////////////
/// string0 descriptor
///////////////////////////////////////
USB_LANGID_INIT(USBD_LANGID_STRING),
///////////////////////////////////////
/// string1 descriptor
///////////////////////////////////////
0x16, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'E', 0x00, /* wcChar0 */
'm', 0x00, /* wcChar1 */
'i', 0x00, /* wcChar2 */
'l', 0x00, /* wcChar3 */
' ', 0x00, /* wcChar4 */
'L', 0x00, /* wcChar5 */
'e', 0x00, /* wcChar6 */
'r', 0x00, /* wcChar7 */
'c', 0x00, /* wcChar8 */
'h', 0x00, /* wcChar9 */
///////////////////////////////////////
/// string2 descriptor
///////////////////////////////////////
0x22, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'B', 0x00, /* wcChar0 */
'L', 0x00, /* wcChar1 */
'6', 0x00, /* wcChar2 */
'1', 0x00, /* wcChar3 */
'6', 0x00, /* wcChar4 */
' ', 0x00, /* wcChar5 */
'B', 0x00, /* wcChar6 */
'a', 0x00, /* wcChar7 */
'r', 0x00, /* wcChar8 */
'e', 0x00, /* wcChar9 */
' ', 0x00, /* wcChar10 */
'M', 0x00, /* wcChar11 */
'e', 0x00, /* wcChar12 */
't', 0x00, /* wcChar13 */
'a', 0x00, /* wcChar14 */
'l', 0x00, /* wcChar15 */
///////////////////////////////////////
/// string3 descriptor
///////////////////////////////////////
0x16, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'2', 0x00, /* wcChar0 */
'0', 0x00, /* wcChar1 */
'2', 0x00, /* wcChar2 */
'3', 0x00, /* wcChar3 */
'-', 0x00, /* wcChar4 */
'0', 0x00, /* wcChar5 */
'4', 0x00, /* wcChar6 */
'-', 0x00, /* wcChar7 */
'1', 0x00, /* wcChar8 */
'9', 0x00, /* wcChar9 */
///////////////////////////////////////
/// string4 descriptor
///////////////////////////////////////
0x14, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'D', 0x00, /* wcChar0 */
'E', 0x00, /* wcChar1 */
'B', 0x00, /* wcChar2 */
'U', 0x00, /* wcChar3 */
'G', 0x00, /* wcChar4 */
' ', 0x00, /* wcChar5 */
'L', 0x00, /* wcChar6 */
'O', 0x00, /* wcChar7 */
'G', 0x00, /* wcChar8 */
#ifdef CONFIG_USB_HS
///////////////////////////////////////
/// device qualifier descriptor
///////////////////////////////////////
0x0a,
USB_DESCRIPTOR_TYPE_DEVICE_QUALIFIER,
0x00,
0x02,
0x02,
0x02,
0x01,
0x40,
0x01,
0x00,
#endif
0x00
};
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t read_buffer[2048];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t write_buffer[2048];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t debug_buffer[2048];
volatile bool ep_tx_busy_flag = false;
volatile bool ep_dbg_tx_busy_flag = false;
// TODO: Remove these. Debugging only
volatile uint8_t debug_val_1 = 0;
volatile uint8_t debug_val_2 = 0;
volatile uint32_t debug_val32_1 = 0;
volatile uint32_t debug_val32_2 = 0;
#ifdef CONFIG_USB_HS
#define CDC_MAX_MPS 512
#else
#define CDC_MAX_MPS 64
#endif
void usbd_configure_done_callback(void)
{
/* setup first out ep read transfer */
usbd_ep_start_read(CDC_OUT_EP, read_buffer, 2048);
usbd_ep_start_read(CDC_OUT_DBG_EP, read_buffer, 2048);
}
void usbd_cdc_acm_bulk_out(uint8_t ep, uint32_t nbytes)
{
debug_val_1 = ep; debug_val32_1 = nbytes;
USB_LOG_RAW("actual out len:%d\r\n", nbytes);
/* setup next out ep read transfer */
usbd_ep_start_read(ep, read_buffer, 2048);
}
void usbd_cdc_acm_bulk_in(uint8_t ep, uint32_t nbytes)
{
debug_val_2 = ep; debug_val32_2 = nbytes;
USB_LOG_RAW("actual in len:%d\r\n", nbytes);
if ((nbytes % CDC_MAX_MPS) == 0 && nbytes) {
/* send zlp */
usbd_ep_start_write(ep, NULL, 0);
} else {
if (ep == CDC_IN_EP) {
ep_tx_busy_flag = false;
}else{
ep_dbg_tx_busy_flag = false;
}
}
}
/*!< endpoint call back */
struct usbd_endpoint cdc_out_ep = {
.ep_addr = CDC_OUT_EP,
.ep_cb = usbd_cdc_acm_bulk_out
};
struct usbd_endpoint cdc_in_ep = {
.ep_addr = CDC_IN_EP,
.ep_cb = usbd_cdc_acm_bulk_in
};
struct usbd_interface intf0;
struct usbd_interface intf1;
struct usbd_endpoint cdc_out_dbg_ep = {
.ep_addr = CDC_OUT_DBG_EP,
.ep_cb = usbd_cdc_acm_bulk_out
};
struct usbd_endpoint cdc_in_dbg_ep = {
.ep_addr = CDC_IN_DBG_EP,
.ep_cb = usbd_cdc_acm_bulk_in
};
struct usbd_interface intf2;
struct usbd_interface intf3;
/* function ------------------------------------------------------------------*/
void cdc_acm_init(void)
{
usbd_desc_register(cdc_descriptor);
/* Add primary comms channel */
usbd_add_interface(usbd_cdc_acm_init_intf(&intf0));
usbd_add_interface(usbd_cdc_acm_init_intf(&intf1));
usbd_add_endpoint(&cdc_out_ep);
usbd_add_endpoint(&cdc_in_ep);
/* Add debug log comms channel */
usbd_add_interface(usbd_cdc_acm_init_intf(&intf2));
usbd_add_interface(usbd_cdc_acm_init_intf(&intf3));
usbd_add_endpoint(&cdc_out_dbg_ep);
usbd_add_endpoint(&cdc_in_dbg_ep);
usbd_initialize();
}
volatile uint8_t dtr_enable = 0;
volatile uint8_t dtr_debug_enable = 0;
/************************************************
* Callback function from the host based on
* control flow commands
*/
void usbd_cdc_acm_set_dtr(uint8_t intf, bool dtr)
{
/* Based on above init, intf = 0 is normal, intf = 2 is debug */
if (dtr) {
if (intf == 0) {
dtr_enable = 1;
} else {
dtr_debug_enable = 1;
}
} else {
if (intf == 0) {
dtr_enable = 0;
} else {
dtr_debug_enable = 0;
}
}
}
void cdc_acm_data_send_with_dtr(const uint8_t *data, uint32_t data_len )
{
if (dtr_enable) {
ep_tx_busy_flag = true;
usbd_ep_start_write(CDC_IN_EP, data, data_len);
while (ep_tx_busy_flag) {
}
}
}
void cdc_acm_log_with_dtr(const uint8_t *data, uint32_t data_len )
{
if (dtr_debug_enable) {
ep_dbg_tx_busy_flag = true;
usbd_ep_start_write(CDC_IN_DBG_EP, data, data_len);
while (ep_dbg_tx_busy_flag) {
}
}
}
uint32_t out_inx = 0;
void log(const char *data){
int len = snprintf(
(char *)&write_buffer[0],
2048,
"%d\r\ndebug u8 val 1: %d, debug val u8 2: %d\r\ndebug 32 val 1: %d, debug 32 val 2: %d\r\nsending to debug...\r\n",
out_inx++,
debug_val_1,
debug_val_2,
debug_val32_1,
debug_val32_2
);
cdc_acm_data_send_with_dtr(&write_buffer[0], len);
int dbg_len = snprintf(
(char *)&debug_buffer[0],
2048,
"%d\r\ndebug u8 val 1: %d, debug val u8 2: %d\r\ndebug 32 val 1: %d, debug 32 val 2: %d\r\n(debug log)\r\n",
out_inx,
debug_val_1,
debug_val_2,
debug_val32_1,
debug_val32_2
);
cdc_acm_log_with_dtr(&debug_buffer[0], dbg_len);
}