bl616-usb-cdc-acm/cdc_acm_usb_interface.c

403 lines
13 KiB
C

#include "usbd_core.h"
#include "usbd_cdc.h"
#include "bflb_mtimer.h"
#include <stdarg.h>
/*!< endpoint address */
/* Transmissions Device->Host (otherwise known as "IN" in these constants */
/* Need to be >= 0x80 to be considered a transmission. See */
/* https://github.com/sakumisu/CherryUSB/blob/d7c0add7ef58cfa711cf152c088a7e1c65fa5886/core/usbd_core.c#L1230 */
/*
* Endpoint Address
* Bits 0..3b Endpoint Number.
* Bits 4..6b Reserved. Set to Zero
* Bits 7 Direction 0 = Out, 1 = In (Ignored for Control Endpoints)
*
* So, each endpoint needs to have a unique number in 0..3, so a total of 16
* endpoints. Bit 7 is directional. So 0x00-0x0F is outbound, and 0x80-0x8f is
* inbound, and everything must be unique in the last nibble. At least that is
* my understanding at this point.
*/
#define CDC_IN_EP 0x81
#define CDC_OUT_EP 0x02
#define CDC_INT_EP 0x85
#define CDC_IN_DBG_EP 0x83
#define CDC_OUT_DBG_EP 0x04
#define CDC_INT_DBG_EP 0x86
#define USBD_VID 0x10B0 /* Vendor Id */
#define USBD_PID 0xDEAD /* Product Id */
#define USBD_MAX_POWER 100
#define USBD_LANGID_STRING 1033 /* US English */
#define LVL_NORMAL 0x00
#define LVL_WARN 0x01
#define LVL_ERROR 0x02
/*!< config descriptor size */
#define USB_CONFIG_SIZE (9 + CDC_ACM_DESCRIPTOR_LEN * 2)
/* USB Device descriptors. If you don't know what you're doing, read this
* first: https://beyondlogic.org/usbnutshell/usb5.shtml
*
* We have one and only one Device Descriptor that describes the physical device
* But what linux is calling a "device" has nothing to do with that. I believe
* this varies by the type of USB device. For USB CDC ACM, we are looking at
* each "Interface association" as its own Linux device (as determined by
* /dev/ttyACMx).
*
* From Device Descriptor, we'll have any number of "configurations", which
* typically describes different power profiles, etc. Typically there is only
* one configuration, but it doesn't need to be that way.
*
* Within the configuraiton, we have various interfaces. Using the macro
* CDC_ACM_DESCRIPTOR_INIT provided by CherryUSB will provide us with:
*
* * Interface Association to describe two interfaces ("in" and "out")
* * Interface for outbound traffic
* * Interface for inbound traffic
*
* I believe that the CDC_INT_* constants above refer to the interface association
*
* To actually communicate, we need to setup endpoints, which are associated
* with the interfaces above. So the full heirarchy is:
*
* Device -1:n- Configuration -1:n- Interface -1:n- Endpoint
*
* Where for typical, CDC ACM usage is:
*
* Device -1:1- Configuration -1:n- Interface (2 per what Linux calls device) -1:1- Endpoint
*
*/
/*!< global descriptor */
static const uint8_t cdc_descriptor[] = {
USB_DEVICE_DESCRIPTOR_INIT(USB_2_0, 0xEF, 0x02, 0x01, USBD_VID, USBD_PID, 0x0100, 0x01),
USB_CONFIG_DESCRIPTOR_INIT(USB_CONFIG_SIZE, 0x04, 0x01, USB_CONFIG_BUS_POWERED, USBD_MAX_POWER),
/* ^ - Number of interfaces. We need a seperate in and out channel for each virtual */
/* So for each /dev/ttyACMx, add 2 to this number */
/* */
/* The last paramater is the string index for this interface. Linux does not */
/* seem to report that anywhere, but maybe Windows does? */
CDC_ACM_DESCRIPTOR_INIT(0x00, CDC_INT_EP, CDC_OUT_EP, CDC_IN_EP, 0x02),
CDC_ACM_DESCRIPTOR_INIT(0x02, CDC_INT_DBG_EP, CDC_OUT_DBG_EP, CDC_IN_DBG_EP, 0x02),
///////////////////////////////////////
/// string0 descriptor
///////////////////////////////////////
USB_LANGID_INIT(USBD_LANGID_STRING),
///////////////////////////////////////
/// string1 descriptor
///////////////////////////////////////
0x16, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'E', 0x00, /* wcChar0 */
'm', 0x00, /* wcChar1 */
'i', 0x00, /* wcChar2 */
'l', 0x00, /* wcChar3 */
' ', 0x00, /* wcChar4 */
'L', 0x00, /* wcChar5 */
'e', 0x00, /* wcChar6 */
'r', 0x00, /* wcChar7 */
'c', 0x00, /* wcChar8 */
'h', 0x00, /* wcChar9 */
///////////////////////////////////////
/// string2 descriptor
///////////////////////////////////////
0x22, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'B', 0x00, /* wcChar0 */
'L', 0x00, /* wcChar1 */
'6', 0x00, /* wcChar2 */
'1', 0x00, /* wcChar3 */
'6', 0x00, /* wcChar4 */
' ', 0x00, /* wcChar5 */
'B', 0x00, /* wcChar6 */
'a', 0x00, /* wcChar7 */
'r', 0x00, /* wcChar8 */
'e', 0x00, /* wcChar9 */
' ', 0x00, /* wcChar10 */
'M', 0x00, /* wcChar11 */
'e', 0x00, /* wcChar12 */
't', 0x00, /* wcChar13 */
'a', 0x00, /* wcChar14 */
'l', 0x00, /* wcChar15 */
///////////////////////////////////////
/// string3 descriptor
///////////////////////////////////////
0x16, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'2', 0x00, /* wcChar0 */
'0', 0x00, /* wcChar1 */
'2', 0x00, /* wcChar2 */
'3', 0x00, /* wcChar3 */
'-', 0x00, /* wcChar4 */
'0', 0x00, /* wcChar5 */
'4', 0x00, /* wcChar6 */
'-', 0x00, /* wcChar7 */
'1', 0x00, /* wcChar8 */
'9', 0x00, /* wcChar9 */
///////////////////////////////////////
/// string4 descriptor
///////////////////////////////////////
0x14, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'D', 0x00, /* wcChar0 */
'E', 0x00, /* wcChar1 */
'B', 0x00, /* wcChar2 */
'U', 0x00, /* wcChar3 */
'G', 0x00, /* wcChar4 */
' ', 0x00, /* wcChar5 */
'L', 0x00, /* wcChar6 */
'O', 0x00, /* wcChar7 */
'G', 0x00, /* wcChar8 */
#ifdef CONFIG_USB_HS
///////////////////////////////////////
/// device qualifier descriptor
///////////////////////////////////////
0x0a,
USB_DESCRIPTOR_TYPE_DEVICE_QUALIFIER,
0x00,
0x02,
0x02,
0x02,
0x01,
0x40,
0x01,
0x00,
#endif
0x00
};
#define BUFFER_SIZE 2048
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t read_buffer[BUFFER_SIZE];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t write_buffer[BUFFER_SIZE];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t debug_buffer[BUFFER_SIZE];
volatile bool ep_tx_busy_flag = false;
volatile bool ep_dbg_tx_busy_flag = false;
void (*data_received_ptr)(uint32_t, uint8_t *) = NULL;
void (*dtr_changed_ptr)(bool);
#ifdef CONFIG_USB_HS
#define CDC_MAX_MPS 512
#else
#define CDC_MAX_MPS 64
#endif
void debuglog(const char *, ...);
void usbd_configure_done_callback(void)
{
/* setup first out ep read transfer */
usbd_ep_start_read(CDC_OUT_EP, read_buffer, BUFFER_SIZE);
usbd_ep_start_read(CDC_OUT_DBG_EP, read_buffer, BUFFER_SIZE);
}
void usbd_cdc_acm_bulk_out(uint8_t ep, uint32_t nbytes)
{
USB_LOG_RAW("actual out len:%d\r\n", nbytes);
debuglog("Bytes received from host. actual out len:%d\r\n", nbytes);
if (data_received_ptr != NULL) (*data_received_ptr)(nbytes, read_buffer);
/* setup next out ep read transfer */
usbd_ep_start_read(ep, read_buffer, BUFFER_SIZE);
}
void usbd_cdc_acm_bulk_in(uint8_t ep, uint32_t nbytes)
{
USB_LOG_RAW("actual in len:%d\r\n", nbytes);
if ((nbytes % CDC_MAX_MPS) == 0 && nbytes) {
/* send zlp */
usbd_ep_start_write(ep, NULL, 0);
} else {
if (ep == CDC_IN_EP) {
ep_tx_busy_flag = false;
}else{
ep_dbg_tx_busy_flag = false;
}
}
}
/*!< endpoint call back */
struct usbd_endpoint cdc_out_ep = {
.ep_addr = CDC_OUT_EP,
.ep_cb = usbd_cdc_acm_bulk_out
};
struct usbd_endpoint cdc_in_ep = {
.ep_addr = CDC_IN_EP,
.ep_cb = usbd_cdc_acm_bulk_in
};
struct usbd_interface intf0;
struct usbd_interface intf1;
struct usbd_endpoint cdc_out_dbg_ep = {
.ep_addr = CDC_OUT_DBG_EP,
.ep_cb = usbd_cdc_acm_bulk_out
};
struct usbd_endpoint cdc_in_dbg_ep = {
.ep_addr = CDC_IN_DBG_EP,
.ep_cb = usbd_cdc_acm_bulk_in
};
struct usbd_interface intf2;
struct usbd_interface intf3;
/* function ------------------------------------------------------------------*/
void cdc_acm_init(void)
{
usbd_desc_register(cdc_descriptor);
/* Add primary comms channel */
usbd_add_interface(usbd_cdc_acm_init_intf(&intf0));
usbd_add_interface(usbd_cdc_acm_init_intf(&intf1));
usbd_add_endpoint(&cdc_out_ep);
usbd_add_endpoint(&cdc_in_ep);
/* Add debug log comms channel */
usbd_add_interface(usbd_cdc_acm_init_intf(&intf2));
usbd_add_interface(usbd_cdc_acm_init_intf(&intf3));
usbd_add_endpoint(&cdc_out_dbg_ep);
usbd_add_endpoint(&cdc_in_dbg_ep);
usbd_initialize();
}
volatile uint8_t dtr_enable = 0;
volatile uint8_t dtr_dbg_enable = 0;
/************************************************
* Callback function from the host based on
* control flow commands
*/
void usbd_cdc_acm_set_dtr(uint8_t intf, bool dtr)
{
/* Based on above init, intf = 0 is normal, intf = 2 is debug */
if (dtr) {
debuglog("Data terminal ready (DTR enabled) on intf: %d\r\n", intf);
if (intf == 0) {
dtr_enable = 1;
if (dtr_changed_ptr != NULL) { (*dtr_changed_ptr)(dtr); }
} else {
dtr_dbg_enable = 1;
}
} else {
debuglog("DTR disabled on intf: %d\r\n", intf);
if (intf == 0) {
if (dtr_changed_ptr != NULL) { (*dtr_changed_ptr)(dtr); }
dtr_enable = 0;
} else {
dtr_dbg_enable = 0;
}
}
}
bool is_color = true;
int prefix(bool is_debug, uint8_t lvl, uint8_t *buffer) {
if (!is_debug) return 0;
int len = 0;
if (is_color) {
len = sprintf((char *)buffer, "\033[32m[%.3f]:\033[00m ", bflb_mtimer_get_time_ms() / 1000.00);
memcpy(buffer + len, "\033[", 5);
switch (lvl) {
case LVL_NORMAL:
memcpy(buffer + len + 5, "00m", 3);
break;
case LVL_WARN:
memcpy(buffer + len + 5, "33m", 3);
break;
case LVL_ERROR:
memcpy(buffer + len + 5, "31m", 3);
break;
}
len += 8;
}else{
len = sprintf((char *)buffer, "[%.3f]: ", bflb_mtimer_get_time_ms() / 1000.00);
}
return len;
}
int suffix(bool is_debug, uint8_t lvl, uint8_t *buffer, size_t len) {
if (!is_debug) return len;
if (!is_color) return len;
memcpy(buffer + len, "\033[00m", 8);
return len + 8;
}
void nprintf(uint8_t lvl, const uint8_t ep, const char *fmt, va_list ap) {
/* If DTR is not enabled for the desired interface, bail early */
if (ep == CDC_IN_EP && !dtr_enable) return;
if (ep == CDC_IN_DBG_EP && !dtr_dbg_enable) return; // TODO: buffer messages?
size_t max_len = BUFFER_SIZE;
uint8_t *buffer = NULL;
// 8 chars on either side
if (ep == CDC_IN_EP) {
buffer = &write_buffer[0];
ep_tx_busy_flag = true;
} else {
buffer = &debug_buffer[0];
ep_dbg_tx_busy_flag = true;
}
int len = prefix(ep == CDC_IN_DBG_EP, lvl, buffer);
len += vsnprintf(
(char *)buffer + len,
max_len - len,
fmt,
ap
);
len = suffix(ep == CDC_IN_DBG_EP, lvl, buffer, len);
usbd_ep_start_write(ep, buffer, len);
if (ep == CDC_IN_EP) {
//while (ep_tx_busy_flag) {}
}else {
//while (ep_dbg_tx_busy_flag) {}
}
}
void raw_output(size_t len, uint8_t *data) {
if (!dtr_enable) return;
ep_tx_busy_flag = true;
usbd_ep_start_write(CDC_IN_EP, data, len);
//while (ep_dbg_tx_busy_flag) {}
}
void output(const char *fmt, ...) {
va_list args;
va_start (args, fmt);
nprintf(LVL_NORMAL, CDC_IN_EP, fmt, args);
va_end(args);
}
void debuglog(const char *fmt, ...) {
va_list args;
va_start (args, fmt);
nprintf(LVL_NORMAL, CDC_IN_DBG_EP, fmt, args);
va_end(args);
}
void debugwarn(const char *fmt, ...) {
va_list args;
va_start (args, fmt);
nprintf(LVL_WARN, CDC_IN_DBG_EP, fmt, args);
va_end(args);
}
void debugerror(const char *fmt, ...) {
va_list args;
va_start (args, fmt);
nprintf(LVL_ERROR, CDC_IN_DBG_EP, fmt, args);
va_end(args);
}