Emil Lerch
54740a7022
All checks were successful
AWS-Zig Build / build-zig-0.11.0-amd64-host (push) Successful in 1m29s
499 lines
20 KiB
Zig
499 lines
20 KiB
Zig
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
|
|
const HandlerFn = @import("universal_lambda.zig").HandlerFn;
|
|
const Context = @import("universal_lambda.zig").Context;
|
|
|
|
const log = std.log.scoped(.lambda);
|
|
|
|
var empty_headers: std.http.Headers = undefined;
|
|
var client: ?std.http.Client = null;
|
|
|
|
const prefix = "http://";
|
|
const postfix = "/2018-06-01/runtime/invocation";
|
|
|
|
pub fn deinit() void {
|
|
if (client) |*c| c.deinit();
|
|
client = null;
|
|
}
|
|
/// Starts the lambda framework. Handler will be called when an event is processing
|
|
/// If an allocator is not provided, an approrpriate allocator will be selected and used
|
|
/// This function is intended to loop infinitely. If not used in this manner,
|
|
/// make sure to call the deinit() function
|
|
pub fn run(allocator: ?std.mem.Allocator, event_handler: HandlerFn) !void { // TODO: remove inferred error set?
|
|
const lambda_runtime_uri = std.os.getenv("AWS_LAMBDA_RUNTIME_API") orelse test_lambda_runtime_uri.?;
|
|
// TODO: If this is null, go into single use command line mode
|
|
|
|
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
|
|
defer _ = gpa.deinit();
|
|
const alloc = allocator orelse gpa.allocator();
|
|
|
|
const url = try std.fmt.allocPrint(alloc, "{s}{s}{s}/next", .{ prefix, lambda_runtime_uri, postfix });
|
|
defer alloc.free(url);
|
|
const uri = try std.Uri.parse(url);
|
|
|
|
// TODO: Simply adding this line without even using the client is enough
|
|
// to cause seg faults!?
|
|
// client = client orelse .{ .allocator = alloc };
|
|
// so we'll do this instead
|
|
if (client != null) return error.MustDeInitBeforeCallingRunAgain;
|
|
client = .{ .allocator = alloc };
|
|
empty_headers = std.http.Headers.init(alloc);
|
|
defer empty_headers.deinit();
|
|
log.info("tid {d} (lambda): Bootstrap initializing with event url: {s}", .{ std.Thread.getCurrentId(), url });
|
|
|
|
while (lambda_remaining_requests == null or lambda_remaining_requests.? > 0) {
|
|
if (lambda_remaining_requests) |*r| {
|
|
// we're under test
|
|
log.debug("lambda remaining requests: {d}", .{r.*});
|
|
r.* -= 1;
|
|
}
|
|
var req_alloc = std.heap.ArenaAllocator.init(alloc);
|
|
defer req_alloc.deinit();
|
|
const req_allocator = req_alloc.allocator();
|
|
|
|
// Fundamentally we're doing 3 things:
|
|
// 1. Get the next event from Lambda (event data and request id)
|
|
// 2. Call our handler to get the response
|
|
// 3. Post the response back to Lambda
|
|
var ev = getEvent(req_allocator, uri) catch |err| {
|
|
// Well, at this point all we can do is shout at the void
|
|
log.err("Error fetching event details: {}", .{err});
|
|
std.os.exit(1);
|
|
// continue;
|
|
};
|
|
if (ev == null) continue; // this gets logged in getEvent, and without
|
|
// a request id, we still can't do anything
|
|
// reasonable to report back
|
|
const event = ev.?;
|
|
defer ev.?.deinit();
|
|
// Lambda does not have context, just environment variables. API Gateway
|
|
// might be configured to pass in lots of context, but this comes through
|
|
// event data, not context.
|
|
const event_response = event_handler(req_allocator, event.event_data, .{ .none = {} }) catch |err| {
|
|
event.reportError(@errorReturnTrace(), err, lambda_runtime_uri) catch unreachable;
|
|
continue;
|
|
};
|
|
event.postResponse(lambda_runtime_uri, event_response) catch |err| {
|
|
event.reportError(@errorReturnTrace(), err, lambda_runtime_uri) catch unreachable;
|
|
continue;
|
|
};
|
|
}
|
|
}
|
|
|
|
const Event = struct {
|
|
allocator: std.mem.Allocator,
|
|
event_data: []u8,
|
|
request_id: []u8,
|
|
|
|
const Self = @This();
|
|
|
|
pub fn init(allocator: std.mem.Allocator, event_data: []u8, request_id: []u8) Self {
|
|
return .{
|
|
.allocator = allocator,
|
|
.event_data = event_data,
|
|
.request_id = request_id,
|
|
};
|
|
}
|
|
pub fn deinit(self: *Self) void {
|
|
self.allocator.free(self.event_data);
|
|
self.allocator.free(self.request_id);
|
|
}
|
|
fn reportError(
|
|
self: Self,
|
|
return_trace: ?*std.builtin.StackTrace,
|
|
err: anytype,
|
|
lambda_runtime_uri: []const u8,
|
|
) !void {
|
|
// If we fail in this function, we're pretty hosed up
|
|
if (return_trace) |rt|
|
|
log.err("Caught error: {}. Return Trace: {any}", .{ err, rt })
|
|
else
|
|
log.err("Caught error: {}. No return trace available", .{err});
|
|
const err_url = try std.fmt.allocPrint(
|
|
self.allocator,
|
|
"{s}{s}{s}/{s}/error",
|
|
.{ prefix, lambda_runtime_uri, postfix, self.request_id },
|
|
);
|
|
defer self.allocator.free(err_url);
|
|
const err_uri = try std.Uri.parse(err_url);
|
|
const content =
|
|
\\{{
|
|
\\ "errorMessage": "{s}",
|
|
\\ "errorType": "HandlerReturnedError",
|
|
\\ "stackTrace": [ "{any}" ]
|
|
\\}}
|
|
;
|
|
const content_fmt = if (return_trace) |rt|
|
|
try std.fmt.allocPrint(self.allocator, content, .{ @errorName(err), rt })
|
|
else
|
|
try std.fmt.allocPrint(self.allocator, content, .{ @errorName(err), "no return trace available" });
|
|
defer self.allocator.free(content_fmt);
|
|
log.err("Posting to {s}: Data {s}", .{ err_url, content_fmt });
|
|
|
|
var err_headers = std.http.Headers.init(self.allocator);
|
|
defer err_headers.deinit();
|
|
err_headers.append(
|
|
"Lambda-Runtime-Function-Error-Type",
|
|
"HandlerReturned",
|
|
) catch |append_err| {
|
|
log.err("Error appending error header to post response for request id {s}: {}", .{ self.request_id, append_err });
|
|
std.os.exit(1);
|
|
};
|
|
// TODO: There is something up with using a shared client in this way
|
|
// so we're taking a perf hit in favor of stability. In a practical
|
|
// sense, without making HTTPS connections (lambda environment is
|
|
// non-ssl), this shouldn't be a big issue
|
|
var cl = std.http.Client{ .allocator = self.allocator };
|
|
defer cl.deinit();
|
|
var req = try cl.request(.POST, err_uri, empty_headers, .{});
|
|
// var req = try client.?.request(.POST, err_uri, empty_headers, .{});
|
|
// defer req.deinit();
|
|
req.transfer_encoding = .{ .content_length = content_fmt.len };
|
|
req.start() catch |post_err| { // Well, at this point all we can do is shout at the void
|
|
log.err("Error posting response (start) for request id {s}: {}", .{ self.request_id, post_err });
|
|
std.os.exit(1);
|
|
};
|
|
try req.writeAll(content_fmt);
|
|
try req.finish();
|
|
req.wait() catch |post_err| { // Well, at this point all we can do is shout at the void
|
|
log.err("Error posting response (wait) for request id {s}: {}", .{ self.request_id, post_err });
|
|
std.os.exit(1);
|
|
};
|
|
// TODO: Determine why this post is not returning
|
|
if (req.response.status != .ok) {
|
|
// Documentation says something about "exit immediately". The
|
|
// Lambda infrastrucutre restarts, so it's unclear if that's necessary.
|
|
// It seems as though a continue should be fine, and slightly faster
|
|
log.err("Get fail: {} {s}", .{
|
|
@intFromEnum(req.response.status),
|
|
req.response.status.phrase() orelse "",
|
|
});
|
|
std.os.exit(1);
|
|
}
|
|
log.err("Error reporting post complete", .{});
|
|
}
|
|
|
|
fn postResponse(self: Self, lambda_runtime_uri: []const u8, event_response: []const u8) !void {
|
|
const response_url = try std.fmt.allocPrint(
|
|
self.allocator,
|
|
"{s}{s}{s}/{s}/response",
|
|
.{ prefix, lambda_runtime_uri, postfix, self.request_id },
|
|
);
|
|
defer self.allocator.free(response_url);
|
|
const response_uri = try std.Uri.parse(response_url);
|
|
var cl = std.http.Client{ .allocator = self.allocator };
|
|
defer cl.deinit();
|
|
var req = try cl.request(.POST, response_uri, empty_headers, .{});
|
|
// var req = try client.?.request(.POST, response_uri, empty_headers, .{});
|
|
defer req.deinit();
|
|
// Lambda does different things, depending on the runtime. Go 1.x takes
|
|
// any return value but escapes double quotes. Custom runtimes can
|
|
// do whatever they want. node I believe wraps as a json object. We're
|
|
// going to leave the return value up to the handler, and they can
|
|
// use a seperate API for normalization so we're explicit.
|
|
const response_content = try std.fmt.allocPrint(
|
|
self.allocator,
|
|
"{s}",
|
|
.{event_response},
|
|
);
|
|
defer self.allocator.free(response_content);
|
|
|
|
req.transfer_encoding = .{ .content_length = response_content.len };
|
|
try req.start();
|
|
try req.writeAll(response_content);
|
|
try req.finish();
|
|
try req.wait();
|
|
}
|
|
};
|
|
|
|
fn getEvent(allocator: std.mem.Allocator, event_data_uri: std.Uri) !?Event {
|
|
// TODO: There is something up with using a shared client in this way
|
|
// so we're taking a perf hit in favor of stability. In a practical
|
|
// sense, without making HTTPS connections (lambda environment is
|
|
// non-ssl), this shouldn't be a big issue
|
|
var cl = std.http.Client{ .allocator = allocator };
|
|
defer cl.deinit();
|
|
var req = try cl.request(.GET, event_data_uri, empty_headers, .{});
|
|
// var req = try client.?.request(.GET, event_data_uri, empty_headers, .{});
|
|
// defer req.deinit();
|
|
|
|
try req.start();
|
|
try req.finish();
|
|
// Lambda freezes the process at this line of code. During warm start,
|
|
// the process will unfreeze and data will be sent in response to client.get
|
|
try req.wait();
|
|
if (req.response.status != .ok) {
|
|
// Documentation says something about "exit immediately". The
|
|
// Lambda infrastrucutre restarts, so it's unclear if that's necessary.
|
|
// It seems as though a continue should be fine, and slightly faster
|
|
// std.os.exit(1);
|
|
log.err("Lambda server event response returned bad error code: {} {s}", .{
|
|
@intFromEnum(req.response.status),
|
|
req.response.status.phrase() orelse "",
|
|
});
|
|
return error.EventResponseNotOkResponse;
|
|
}
|
|
|
|
var request_id: ?[]const u8 = null;
|
|
var content_length: ?usize = null;
|
|
for (req.response.headers.list.items) |h| {
|
|
if (std.ascii.eqlIgnoreCase(h.name, "Lambda-Runtime-Aws-Request-Id"))
|
|
request_id = h.value;
|
|
if (std.ascii.eqlIgnoreCase(h.name, "Content-Length")) {
|
|
content_length = std.fmt.parseUnsigned(usize, h.value, 10) catch null;
|
|
if (content_length == null)
|
|
log.warn("Error parsing content length value: '{s}'", .{h.value});
|
|
}
|
|
// TODO: XRay uses an environment variable to do its magic. It's our
|
|
// responsibility to set this, but no zig-native setenv(3)/putenv(3)
|
|
// exists. I would kind of rather not link in libc for this,
|
|
// so we'll hold for now and think on this
|
|
// if (std.mem.indexOf(u8, h.name.value, "Lambda-Runtime-Trace-Id")) |_|
|
|
// std.process.
|
|
// std.os.setenv("AWS_LAMBDA_RUNTIME_API");
|
|
}
|
|
if (request_id == null) {
|
|
// We can't report back an issue because the runtime error reporting endpoint
|
|
// uses request id in its path. So the best we can do is log the error and move
|
|
// on here.
|
|
log.err("Could not find request id: skipping request", .{});
|
|
return null;
|
|
}
|
|
if (content_length == null) {
|
|
// We can't report back an issue because the runtime error reporting endpoint
|
|
// uses request id in its path. So the best we can do is log the error and move
|
|
// on here.
|
|
log.err("No content length provided for event data", .{});
|
|
return null;
|
|
}
|
|
const req_id = request_id.?;
|
|
log.debug("got lambda request with id {s}", .{req_id});
|
|
|
|
var response_data: []u8 =
|
|
if (req.response.transfer_encoding) |_| // the only value here is "chunked"
|
|
try req.reader().readAllAlloc(allocator, std.math.maxInt(usize))
|
|
else blk: {
|
|
// content length
|
|
var tmp_data = try allocator.alloc(u8, content_length.?);
|
|
errdefer allocator.free(tmp_data);
|
|
_ = try req.readAll(tmp_data);
|
|
break :blk tmp_data;
|
|
};
|
|
|
|
return Event.init(
|
|
allocator,
|
|
response_data,
|
|
try allocator.dupe(u8, req_id),
|
|
);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// All code below this line is for testing
|
|
////////////////////////////////////////////////////////////////////////
|
|
var server_port: ?u16 = null;
|
|
var server_remaining_requests: usize = 0;
|
|
var lambda_remaining_requests: ?usize = null;
|
|
var server_response: []const u8 = "unset";
|
|
var server_request_aka_lambda_response: []u8 = "";
|
|
var test_lambda_runtime_uri: ?[]u8 = null;
|
|
|
|
var server_ready = false;
|
|
/// This starts a test server. We're not testing the server itself,
|
|
/// so the main tests will start this thing up and create an arena around the
|
|
/// whole thing so we can just deallocate everything at once at the end,
|
|
/// leaks be damned
|
|
fn startServer(allocator: std.mem.Allocator) !std.Thread {
|
|
return try std.Thread.spawn(
|
|
.{},
|
|
threadMain,
|
|
.{allocator},
|
|
);
|
|
}
|
|
|
|
fn threadMain(allocator: std.mem.Allocator) !void {
|
|
var server = std.http.Server.init(allocator, .{ .reuse_address = true });
|
|
// defer server.deinit();
|
|
|
|
const address = try std.net.Address.parseIp("127.0.0.1", 0);
|
|
try server.listen(address);
|
|
server_port = server.socket.listen_address.in.getPort();
|
|
|
|
test_lambda_runtime_uri = try std.fmt.allocPrint(allocator, "127.0.0.1:{d}", .{server_port.?});
|
|
log.debug("server listening at {s}", .{test_lambda_runtime_uri.?});
|
|
defer server.deinit();
|
|
defer test_lambda_runtime_uri = null;
|
|
defer server_port = null;
|
|
log.info("starting server thread, tid {d}", .{std.Thread.getCurrentId()});
|
|
var arena = std.heap.ArenaAllocator.init(allocator);
|
|
defer arena.deinit();
|
|
var aa = arena.allocator();
|
|
// We're in control of all requests/responses, so this flag will tell us
|
|
// when it's time to shut down
|
|
while (server_remaining_requests > 0) {
|
|
server_remaining_requests -= 1;
|
|
// defer {
|
|
// if (!arena.reset(.{ .retain_capacity = {} })) {
|
|
// // reallocation failed, arena is degraded
|
|
// log.warn("Arena reset failed and is degraded. Resetting arena", .{});
|
|
// arena.deinit();
|
|
// arena = std.heap.ArenaAllocator.init(allocator);
|
|
// aa = arena.allocator();
|
|
// }
|
|
// }
|
|
|
|
processRequest(aa, &server) catch |e| {
|
|
log.err("Unexpected error processing request: {any}", .{e});
|
|
if (@errorReturnTrace()) |trace| {
|
|
std.debug.dumpStackTrace(trace.*);
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
fn processRequest(allocator: std.mem.Allocator, server: *std.http.Server) !void {
|
|
server_ready = true;
|
|
errdefer server_ready = false;
|
|
log.debug(
|
|
"tid {d} (server): server waiting to accept. requests remaining: {d}",
|
|
.{ std.Thread.getCurrentId(), server_remaining_requests + 1 },
|
|
);
|
|
var res = try server.accept(.{ .allocator = allocator });
|
|
server_ready = false;
|
|
defer res.deinit();
|
|
defer _ = res.reset();
|
|
try res.wait(); // wait for client to send a complete request head
|
|
|
|
const errstr = "Internal Server Error\n";
|
|
var errbuf: [errstr.len]u8 = undefined;
|
|
@memcpy(&errbuf, errstr);
|
|
var response_bytes: []const u8 = errbuf[0..];
|
|
|
|
if (res.request.content_length) |l|
|
|
server_request_aka_lambda_response = try res.reader().readAllAlloc(allocator, @as(usize, @intCast(l)));
|
|
|
|
log.debug(
|
|
"tid {d} (server): {d} bytes read from request",
|
|
.{ std.Thread.getCurrentId(), server_request_aka_lambda_response.len },
|
|
);
|
|
|
|
// try response.headers.append("content-type", "text/plain");
|
|
response_bytes = serve(allocator, &res) catch |e| brk: {
|
|
res.status = .internal_server_error;
|
|
// TODO: more about this particular request
|
|
log.err("Unexpected error from executor processing request: {any}", .{e});
|
|
if (@errorReturnTrace()) |trace| {
|
|
std.debug.dumpStackTrace(trace.*);
|
|
}
|
|
break :brk "Unexpected error generating request to lambda";
|
|
};
|
|
res.transfer_encoding = .{ .content_length = response_bytes.len };
|
|
try res.do();
|
|
_ = try res.writer().writeAll(response_bytes);
|
|
try res.finish();
|
|
log.debug(
|
|
"tid {d} (server): sent response",
|
|
.{std.Thread.getCurrentId()},
|
|
);
|
|
}
|
|
|
|
fn serve(allocator: std.mem.Allocator, res: *std.http.Server.Response) ![]const u8 {
|
|
_ = allocator;
|
|
// try res.headers.append("content-length", try std.fmt.allocPrint(allocator, "{d}", .{server_response.len}));
|
|
try res.headers.append("Lambda-Runtime-Aws-Request-Id", "69");
|
|
return server_response;
|
|
}
|
|
|
|
fn handler(allocator: std.mem.Allocator, event_data: []const u8, context: Context) ![]const u8 {
|
|
_ = allocator;
|
|
_ = context;
|
|
return event_data;
|
|
}
|
|
fn test_run(allocator: std.mem.Allocator, event_handler: HandlerFn) !std.Thread {
|
|
return try std.Thread.spawn(
|
|
.{},
|
|
run,
|
|
.{ allocator, event_handler },
|
|
);
|
|
}
|
|
|
|
fn lambda_request(allocator: std.mem.Allocator, request: []const u8, request_count: usize) ![]u8 {
|
|
var arena = std.heap.ArenaAllocator.init(allocator);
|
|
defer arena.deinit();
|
|
var aa = arena.allocator();
|
|
// Setup our server to run, and set the response for the server to the
|
|
// request. There is a cognitive disconnect here between mental model and
|
|
// physical model.
|
|
//
|
|
// Mental model:
|
|
//
|
|
// Lambda request -> λ -> Lambda response
|
|
//
|
|
// Physcial Model:
|
|
//
|
|
// 1. λ requests instructions from server
|
|
// 2. server provides "Lambda request"
|
|
// 3. λ posts response back to server
|
|
//
|
|
// So here we are setting up our server, then our lambda request loop,
|
|
// but it all needs to be in seperate threads so we can control startup
|
|
// and shut down. Both server and Lambda are set up to watch global variable
|
|
// booleans to know when to shut down. This function is designed for a
|
|
// single request/response pair only
|
|
|
|
lambda_remaining_requests = request_count;
|
|
server_remaining_requests = lambda_remaining_requests.? * 2; // Lambda functions
|
|
// fetch from the server,
|
|
// then post back. Always
|
|
// 2, no more, no less
|
|
server_response = request; // set our instructions to lambda, which in our
|
|
// physical model above, is the server response
|
|
defer server_response = "unset"; // set it back so we don't get confused later
|
|
// when subsequent tests fail
|
|
const server_thread = try startServer(aa); // start the server, get it ready
|
|
while (!server_ready)
|
|
std.time.sleep(100);
|
|
|
|
log.debug("tid {d} (main): server reports ready", .{std.Thread.getCurrentId()});
|
|
// we aren't testing the server,
|
|
// so we'll use the arena allocator
|
|
defer server_thread.join(); // we'll be shutting everything down before we exit
|
|
|
|
// Now we need to start the lambda framework, following a siimilar pattern
|
|
const lambda_thread = try test_run(allocator, handler); // We want our function under test to report leaks
|
|
lambda_thread.join();
|
|
return try allocator.dupe(u8, server_request_aka_lambda_response);
|
|
}
|
|
|
|
test "basic request" {
|
|
// std.testing.log_level = .debug;
|
|
const allocator = std.testing.allocator;
|
|
const request =
|
|
\\{"foo": "bar", "baz": "qux"}
|
|
;
|
|
|
|
const expected_response =
|
|
\\{"foo": "bar", "baz": "qux"}
|
|
;
|
|
const lambda_response = try lambda_request(allocator, request, 1);
|
|
defer deinit();
|
|
defer allocator.free(lambda_response);
|
|
try std.testing.expectEqualStrings(expected_response, lambda_response);
|
|
}
|
|
|
|
test "several requests do not fail" {
|
|
// std.testing.log_level = .debug;
|
|
const allocator = std.testing.allocator;
|
|
const request =
|
|
\\{"foo": "bar", "baz": "qux"}
|
|
;
|
|
|
|
const expected_response =
|
|
\\{"foo": "bar", "baz": "qux"}
|
|
;
|
|
const lambda_response = try lambda_request(allocator, request, 5);
|
|
defer deinit();
|
|
defer allocator.free(lambda_response);
|
|
try std.testing.expectEqualStrings(expected_response, lambda_response);
|
|
}
|