add shell

This commit is contained in:
Emil Lerch 2025-09-15 20:42:02 -07:00
parent b09f442340
commit 6660a577fb
Signed by: lobo
GPG key ID: A7B62D657EF764F8
6 changed files with 418 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
zig-out/
.zig-cache/

0
README.md Normal file
View file

285
build.zig Normal file
View file

@ -0,0 +1,285 @@
const std = @import("std");
// Although this function looks imperative, it does not perform the build
// directly and instead it mutates the build graph (`b`) that will be then
// executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void {
// Standard target options allow the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
// We need to use curl for this as the domain doesn't work with zig TLS
const model_step = DownloadStep("https://www.link.cs.cmu.edu/link/ftp-site/link-grammar/link-4.1b/unix/link-4.1b.tar.gz").create(b);
// This creates a module, which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("pos", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/root.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target,
});
// Here we define an executable. An executable needs to have a root module
// which needs to expose a `main` function. While we could add a main function
// to the module defined above, it's sometimes preferable to split business
// business logic and the CLI into two separate modules.
//
// If your goal is to create a Zig library for others to use, consider if
// it might benefit from also exposing a CLI tool. A parser library for a
// data serialization format could also bundle a CLI syntax checker, for example.
//
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your
// program in their own executable in order to avoid the overhead involved in
// subprocessing your CLI tool.
//
// If neither case applies to you, feel free to delete the declaration you
// don't need and to put everything under a single module.
const exe = b.addExecutable(.{
.name = "pos",
.root_module = b.createModule(.{
// b.createModule defines a new module just like b.addModule but,
// unlike b.addModule, it does not expose the module to consumers of
// this package, which is why in this case we don't have to give it a name.
.root_source_file = b.path("src/main.zig"),
// Target and optimization levels must be explicitly wired in when
// defining an executable or library (in the root module), and you
// can also hardcode a specific target for an executable or library
// definition if desireable (e.g. firmware for embedded devices).
.target = target,
.optimize = optimize,
// List of modules available for import in source files part of the
// root module.
.imports = &.{
// Here "pos" is the name you will use in your source code to
// import this module (e.g. `@import("pos")`). The name is
// repeated because you are allowed to rename your imports, which
// can be extremely useful in case of collisions (which can happen
// importing modules from different packages).
.{ .name = "pos", .module = mod },
},
}),
});
exe.step.dependOn(&model_step.step);
// This declares intent for the executable to be installed into the
// install prefix when running `zig build` (i.e. when executing the default
// step). By default the install prefix is `zig-out/` but can be overridden
// by passing `--prefix` or `-p`.
b.installArtifact(exe);
// This creates a top level step. Top level steps have a name and can be
// invoked by name when running `zig build` (e.g. `zig build run`).
// This will evaluate the `run` step rather than the default step.
// For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
// By making the run step depend on the default step, it will be run from the
// installation directory rather than directly from within the cache directory.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// Creates an executable that will run `test` blocks from the provided module.
// Here `mod` needs to define a target, which is why earlier we made sure to
// set the releative field.
const mod_tests = b.addTest(.{
.root_module = mod,
});
exe.step.dependOn(&model_step.step);
// A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
// Creates an executable that will run `test` blocks from the executable's
// root module. Note that test executables only test one module at a time,
// hence why we have to create two separate ones.
const exe_tests = b.addTest(.{
.root_module = exe.root_module,
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
}
fn DownloadStep(comptime link: []const u8) type {
return struct {
step: std.Build.Step,
builder: *std.Build,
const download_link = link;
const download_uri = std.Uri.parse(link) catch @compileError("download link is not a valid Uri");
const file_type: enum {
targz,
zip,
} = if (std.mem.endsWith(u8, link, ".tar.gz")) .targz else if (std.mem.endsWith(u8, link, "zip")) .zip else @compileError("can only download tar.gz or zip files");
const Self = @This();
fn fileName(uri: std.Uri) []const u8 {
const path = switch (uri.path) {
.raw => |r| r,
.percent_encoded => |p| p,
};
var it = std.mem.splitBackwardsScalar(u8, path, '/');
return it.first();
}
fn fileNameNoExtension() []const u8 {
const file_name = fileName(download_uri);
return switch (file_type) {
.targz => file_name[0..std.mem.lastIndexOf(u8, file_name, ".tar.gz").?],
.zip => file_name[0..std.mem.lastIndexOf(u8, file_name, ".zip").?],
};
}
pub fn create(builder: *std.Build) *Self {
const self = builder.allocator.create(Self) catch @panic("OOM");
self.* = .{
.step = std.Build.Step.init(.{
.id = .custom,
.name = "download-model",
.owner = builder,
.makeFn = make,
}),
.builder = builder,
};
return self;
}
pub fn getOutputPath(self: *Self) std.Build.LazyPath {
var hasher = std.hash.Wyhash.init(0);
hasher.update(download_link);
const cache_hash = hasher.final();
var cache_dir_buf: [std.fs.max_path_bytes]u8 = undefined;
const cache_dir = std.fmt.bufPrint(&cache_dir_buf, "{s}/o/{x}/{s}", .{ self.builder.cache_root.path.?, cache_hash, fileNameNoExtension() }) catch @panic("path too long");
return .{ .cwd_relative = self.builder.allocator.dupe(u8, cache_dir) catch @panic("OOM") };
}
fn make(step: *std.Build.Step, options: std.Build.Step.MakeOptions) anyerror!void {
_ = options;
const self: *Self = @fieldParentPtr("step", step);
const model_dir = fileNameNoExtension();
// Create a cache hash based on the URL
var hasher = std.hash.Wyhash.init(0);
hasher.update(link);
const cache_hash = hasher.final();
var cache_dir_buf: [std.fs.max_path_bytes]u8 = undefined;
const cache_dir = std.fmt.bufPrint(&cache_dir_buf, "{s}/o/{x}", .{ self.builder.cache_root.path.?, cache_hash }) catch @panic("path too long");
const cached_model_dir = std.fmt.allocPrint(
self.builder.allocator,
"{s}/{s}",
.{ cache_dir, model_dir },
) catch @panic("OOM");
defer self.builder.allocator.free(cached_model_dir);
// Check if already cached
if (std.fs.cwd().access(cached_model_dir, .{})) |_| {
step.result_cached = true;
return;
} else |_| {}
// Not cached, need to download
std.fs.cwd().makePath(cache_dir) catch @panic("Could not create cache directory");
const archive = std.fmt.allocPrint(
self.builder.allocator,
"{s}/{s}",
.{ cache_dir, fileName(download_uri) },
) catch @panic("OOM");
defer self.builder.allocator.free(archive);
// Download
const download_result = std.process.Child.run(.{
.allocator = self.builder.allocator,
.argv = &.{ "curl", "-s", "-o", archive, link },
}) catch return error.DownloadFailed;
if (download_result.term.Exited != 0) return error.DownloadFailed;
switch (file_type) {
.zip => {
// Extract to cache using stdlib
var zip_file = std.fs.cwd().openFile(archive, .{}) catch return error.UnzipFailed;
defer zip_file.close();
var cache_dir_handle = std.fs.cwd().openDir(cache_dir, .{}) catch return error.UnzipFailed;
defer cache_dir_handle.close();
var zip_file_buffer: [4096]u8 = undefined;
var zip_file_reader = zip_file.reader(&zip_file_buffer);
std.zip.extract(cache_dir_handle, &zip_file_reader, .{}) catch return error.UnzipFailed;
step.result_cached = false;
},
.targz => {
@compileError("tar.gz extraction not yet implemented");
},
}
}
};
}

81
build.zig.zon Normal file
View file

@ -0,0 +1,81 @@
.{
// This is the default name used by packages depending on this one. For
// example, when a user runs `zig fetch --save <url>`, this field is used
// as the key in the `dependencies` table. Although the user can choose a
// different name, most users will stick with this provided value.
//
// It is redundant to include "zig" in this name because it is already
// within the Zig package namespace.
.name = .pos,
// This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication.
.version = "0.0.0",
// Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the
// package is first created, and then *never changes*. This allows
// unambiguous detection of one package being an updated version of
// another.
//
// When forking a Zig project, this id should be regenerated (delete the
// field and run `zig build`) if the upstream project is still maintained.
// Otherwise, the fork is *hostile*, attempting to take control over the
// original project's identity. Thus it is recommended to leave the comment
// on the following line intact, so that it shows up in code reviews that
// modify the field.
.fingerprint = 0x80d9e6acc1db9e17, // Changing this has security and trust implications.
// Tracks the earliest Zig version that the package considers to be a
// supported use case.
.minimum_zig_version = "0.15.1",
// This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity.
.dependencies = .{
// See `zig fetch --save <url>` for a command-line interface for adding dependencies.
//.example = .{
// // When updating this field to a new URL, be sure to delete the corresponding
// // `hash`, otherwise you are communicating that you expect to find the old hash at
// // the new URL. If the contents of a URL change this will result in a hash mismatch
// // which will prevent zig from using it.
// .url = "https://example.com/foo.tar.gz",
//
// // This is computed from the file contents of the directory of files that is
// // obtained after fetching `url` and applying the inclusion rules given by
// // `paths`.
// //
// // This field is the source of truth; packages do not come from a `url`; they
// // come from a `hash`. `url` is just one of many possible mirrors for how to
// // obtain a package matching this `hash`.
// //
// // Uses the [multihash](https://multiformats.io/multihash/) format.
// .hash = "...",
//
// // When this is provided, the package is found in a directory relative to the
// // build root. In this case the package's hash is irrelevant and therefore not
// // computed. This field and `url` are mutually exclusive.
// .path = "foo",
//
// // When this is set to `true`, a package is declared to be lazily
// // fetched. This makes the dependency only get fetched if it is
// // actually used.
// .lazy = false,
//},
},
// Specifies the set of files and directories that are included in this package.
// Only files and directories listed here are included in the `hash` that
// is computed for this package. Only files listed here will remain on disk
// when using the zig package manager. As a rule of thumb, one should list
// files required for compilation plus any license(s).
// Paths are relative to the build root. Use the empty string (`""`) to refer to
// the build root itself.
// A directory listed here means that all files within, recursively, are included.
.paths = .{
"build.zig",
"build.zig.zon",
"src",
// For example...
//"LICENSE",
//"README.md",
},
}

27
src/main.zig Normal file
View file

@ -0,0 +1,27 @@
const std = @import("std");
const pos = @import("pos");
pub fn main() !void {
// Prints to stderr, ignoring potential errors.
std.debug.print("All your {s} are belong to us.\n", .{"codebase"});
try pos.bufferedPrint();
}
test "simple test" {
const gpa = std.testing.allocator;
var list: std.ArrayList(i32) = .empty;
defer list.deinit(gpa); // Try commenting this out and see if zig detects the memory leak!
try list.append(gpa, 42);
try std.testing.expectEqual(@as(i32, 42), list.pop());
}
test "fuzz example" {
const Context = struct {
fn testOne(context: @This(), input: []const u8) anyerror!void {
_ = context;
// Try passing `--fuzz` to `zig build test` and see if it manages to fail this test case!
try std.testing.expect(!std.mem.eql(u8, "canyoufindme", input));
}
};
try std.testing.fuzz(Context{}, Context.testOne, .{});
}

23
src/root.zig Normal file
View file

@ -0,0 +1,23 @@
//! By convention, root.zig is the root source file when making a library.
const std = @import("std");
pub fn bufferedPrint() !void {
// Stdout is for the actual output of your application, for example if you
// are implementing gzip, then only the compressed bytes should be sent to
// stdout, not any debugging messages.
var stdout_buffer: [1024]u8 = undefined;
var stdout_writer = std.fs.File.stdout().writer(&stdout_buffer);
const stdout = &stdout_writer.interface;
try stdout.print("Run `zig build test` to run the tests.\n", .{});
try stdout.flush(); // Don't forget to flush!
}
pub fn add(a: i32, b: i32) i32 {
return a + b;
}
test "basic add functionality" {
try std.testing.expect(add(3, 7) == 10);
}