ddblocal/build.zig

284 lines
11 KiB
Zig
Raw Normal View History

2023-10-22 20:26:57 +00:00
const std = @import("std");
2024-01-29 18:27:25 +00:00
const universal_lambda = @import("universal_lambda_build");
2023-10-22 20:26:57 +00:00
2024-02-24 23:48:18 +00:00
// This seems to fail for some reason. zig-sqlite does a lot of messing with
// the target. So instead, we will handle this in the CI/CD system at the
// command line
const test_targets = [_]std.zig.CrossTarget{
.{}, // native
// .{
// .cpu_arch = .x86_64,
// .os_tag = .linux,
// },
// .{
// .cpu_arch = .aarch64,
// .os_tag = .linux,
// },
// .{
// .cpu_arch = .riscv64,
// .os_tag = .linux,
// },
2024-02-24 23:48:18 +00:00
// will not work
// .{
// .cpu_arch = .arm,
// .os_tag = .linux,
// },
// .{
// .cpu_arch = .x86_64,
// .os_tag = .windows,
// },
// .{
// .cpu_arch = .aarch64,
// .os_tag = .macos,
// },
// .{
// .cpu_arch = .x86_64,
// .os_tag = .macos,
// },
// Since we are using sqlite, we cannot use wasm32/wasi at this time. Even
// with compile errors above, I do not believe wasi will be easily supported
// .{
// .cpu_arch = .wasm32,
// .os_tag = .wasi,
// },
};
2023-10-22 20:26:57 +00:00
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) !void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
const exe = b.addExecutable(.{
.name = "ddblocal",
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
2024-01-29 18:27:25 +00:00
try universal_lambda.configureBuild(b, exe);
2023-10-22 20:26:57 +00:00
2024-02-24 23:48:18 +00:00
const exe_aws_dep = b.dependency("aws", .{
2023-10-22 20:26:57 +00:00
.target = target,
.optimize = optimize,
});
2024-02-24 23:48:18 +00:00
const exe_aws_signing_module = exe_aws_dep.module("aws-signing");
const exe_sqlite_dep = b.dependency("sqlite", .{
.target = target,
.optimize = optimize,
.use_bundled = true,
});
2024-02-24 23:48:18 +00:00
const exe_sqlite_module = exe_sqlite_dep.module("sqlite");
exe.addModule("aws-signing", exe_aws_signing_module);
exe.addModule("sqlite", exe_sqlite_module);
exe.addIncludePath(.{ .path = "c" });
exe.linkLibrary(exe_sqlite_dep.artifact("sqlite"));
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
for (test_targets) |t| {
2024-02-24 23:48:18 +00:00
const aws_dep = b.dependency("aws", .{
.target = t,
.optimize = optimize,
});
const aws_signing_module = aws_dep.module("aws-signing");
const sqlite_dep = b.dependency("sqlite", .{
.target = t,
.optimize = optimize,
.use_bundled = true,
});
const sqlite_module = sqlite_dep.module("sqlite");
// Creates a step for unit testing. This only builds the test executable
// but does not run it.
const unit_tests = b.addTest(.{
.root_source_file = .{ .path = "src/main.zig" },
.target = t,
.optimize = optimize,
});
_ = try universal_lambda.addModules(b, unit_tests);
const run_unit_tests = b.addRunArtifact(unit_tests);
// run_unit_tests.skip_foreign_checks = true;
test_step.dependOn(&run_unit_tests.step);
2024-02-24 23:48:18 +00:00
unit_tests.addModule("aws-signing", aws_signing_module);
unit_tests.addModule("sqlite", sqlite_module);
unit_tests.addIncludePath(.{ .path = "c" });
unit_tests.linkLibrary(sqlite_dep.artifact("sqlite"));
2023-10-22 20:26:57 +00:00
}
2024-02-24 01:19:32 +00:00
var creds_step = b.step("generate_credentials", "Generate credentials for access_keys.csv");
creds_step.makeFn = generateCredentials;
}
fn generateCredentials(s: *std.build.Step, prog_node: *std.Progress.Node) error{ MakeFailed, MakeSkipped }!void {
_ = s;
2024-02-24 19:15:13 +00:00
// Account id:
// Documentation describes account id as a 12 digit number:
// https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html
// This can be a random number, but must be in a 12 digit range.
2024-02-24 19:15:13 +00:00
//
// The access key is 32 bit encoded, which leaves us with
// 8 * 5 = 40 bits of information to work with. The maximum value of
// a u40 in decimal is 1099511627775, a 13 digit number. So our maximum
// decimal is below, and fits into u40.
//
// Min: 0x0000000000 (0d000000000000)
// Max: 0xe8d4a50fff (0d999999999999)
2024-02-24 19:15:13 +00:00
//
// Access key:
// This page shows how the access key is put together:
// https://medium.com/@TalBeerySec/a-short-note-on-aws-key-id-f88cc4317489
// tl;dr
// * First 4 characters: designates type of key: We will use "ELAK" for access key
// * Next 8 characters: Account ID, base32 encoded, shifted by one bit
// * Next 8 characters: Unknown. Assume random base32, which would give us 8 * 5 = u40;
2024-02-24 19:15:13 +00:00
//
//
//
// Secret Access Key:
// In the wild, these are 40 characters and appear to be base64 encoded.
// Base64 encoding of 30 bytes is always exactly 40 characters and have
// no padding, which is exactly what we observe
2024-02-24 01:19:32 +00:00
_ = prog_node;
const encryption = @import("src/encryption.zig");
var key: [encryption.encoded_key_length]u8 = undefined;
encryption.randomEncodedKey(&key);
const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp()))));
var prng = std.rand.DefaultPrng.init(seed);
var rand = prng.random();
const account_number = rand.intRangeAtMost(u40, 0, 999999999999); // 100000000000, 999999999999);
const access_key_random_suffix = rand.int(u39);
const access_key_suffix: u80 = (@as(u80, account_number) << 39) + @as(u80, access_key_random_suffix);
const access_key_suffix_encoded = base32Encode(u80, access_key_suffix);
// std.debug.assert(access_key_suffix_encoded.len == 16);
2024-02-24 01:19:32 +00:00
var secret_key: [30]u8 = undefined;
rand.bytes(&secret_key); // The rest don't need to be cryptographically secure...does this?
var encoded_secret: [40]u8 = undefined;
_ = std.base64.standard.Encoder.encode(&encoded_secret, secret_key[0..]);
2024-02-24 19:15:13 +00:00
const stdout_raw = std.io.getStdOut().writer();
var stdout_writer = std.io.bufferedWriter(stdout_raw);
const stdout = stdout_writer.writer();
// stdout.print(
// \\# account_number: {b:0>80}
// \\# random_suffix : {b:0>80}
// \\# access_key_suffix: {b:0>80}
// \\
// ,
// .{
// @as(u80, account_number) << 39,
// @as(u80, access_key_random_suffix),
// access_key_suffix,
// },
// ) catch return error.MakeFailed;
2024-02-24 19:15:13 +00:00
stdout.print(
"# access_key: ELAK{s}, secret_key: {s}, account_number: {d}, db_encryption_key: {s}",
2024-02-24 01:19:32 +00:00
.{
access_key_suffix_encoded,
encoded_secret,
account_number,
key,
},
2024-02-24 19:15:13 +00:00
) catch return error.MakeFailed;
stdout.print(
"\n#\n# You can copy/paste the following line into access_keys.csv:\nELAK{s},{s},{d},{s}\n",
2024-02-24 19:15:13 +00:00
.{
access_key_suffix_encoded,
encoded_secret,
account_number,
key,
},
) catch return error.MakeFailed;
stdout_writer.flush() catch return error.MakeFailed;
2024-02-24 01:19:32 +00:00
}
/// encodes an unsigned integer into base36
pub fn base36encode(comptime T: type, allocator: std.mem.Allocator, data: T) ![]const u8 {
2024-02-24 01:19:32 +00:00
const alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
std.debug.assert(alphabet.len == 36);
2024-02-24 01:19:32 +00:00
const ti = @typeInfo(T);
if (ti != .Int or ti.Int.signedness != .unsigned)
@compileError("encode only works with unsigned integers");
const bits = ti.Int.bits;
// We cannot have more than 6 bits (2^6 = 64) represented per byte in our final output
var al = try std.ArrayList(u8).initCapacity(allocator, bits / 6);
defer al.deinit();
var remaining = data;
while (remaining > 0) : (remaining /= @as(T, @intCast(alphabet.len))) {
al.appendAssumeCapacity(alphabet[@as(usize, @intCast(remaining % alphabet.len))]);
2024-02-24 01:19:32 +00:00
}
// This is not exact, but 6 bits
var rc = try al.toOwnedSlice();
std.mem.reverse(u8, rc);
return rc;
2023-10-22 20:26:57 +00:00
}
/// Because Base32 is a power of 2, we can directly return an array and avoid
/// allocations entirely
/// To trim leading 0s, simply std.mem.trimLeft(u8, encoded_data, "A");
pub fn base32Encode(comptime T: type, data: T) [@typeInfo(T).Int.bits / 5]u8 {
const alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";
std.debug.assert(alphabet.len == 32);
const ti = @typeInfo(T);
if (ti != .Int or ti.Int.signedness != .unsigned)
@compileError("encode only works with unsigned integers");
const bits = ti.Int.bits;
// We will have exactly 5 bits (2^5 = 32) represented per byte in our final output
var rc: [bits / 5]u8 = undefined;
var inx: usize = 0;
const Shift_type = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @ceil(@log2(@as(f128, @floatFromInt(bits)))),
} });
// TODO: I think we need a table here to determine the size below
while (inx < rc.len) : (inx += 1) {
const char_bits: u5 = @as(u5, @truncate(data >> (@as(Shift_type, @intCast(inx * 5)))));
rc[rc.len - @as(usize, @intCast(inx)) - 1] = alphabet[@as(usize, @intCast(char_bits))]; // 5 bits from inx
}
return rc;
}