aws-sdk-for-zig/src/awshttp.zig
Emil Lerch 9c3fcc5a9d
address memory leaks in awshttp
There appears to be a leak in json.zig, which had minimal modifications for
snake/camel case, including use of an allocator. It is not obvious that
the leaks were added by these changes, so I will leave this issue for
later investigation.
2021-06-18 14:06:58 -07:00

974 lines
43 KiB
Zig

//! This module provides a low level http interface for working with AWS
//! It also provides an option to operate outside the AWS ecosystem through
//! the makeRequest call with a null signingOptions.
//!
//! Typical usage:
//! const client = awshttp.AwsHttp.init(allocator);
//! defer client.deinit()
//! const result = client.callApi (or client.makeRequest)
//! defer result.deinit();
const std = @import("std");
const c = @cImport({
@cInclude("bitfield-workaround.h");
@cInclude("aws/common/allocator.h");
@cInclude("aws/common/error.h");
@cInclude("aws/common/string.h");
@cInclude("aws/auth/auth.h");
@cInclude("aws/auth/credentials.h");
@cInclude("aws/auth/signable.h");
@cInclude("aws/auth/signing_config.h");
@cInclude("aws/auth/signing_result.h");
@cInclude("aws/auth/signing.h");
@cInclude("aws/http/connection.h");
@cInclude("aws/http/request_response.h");
@cInclude("aws/io/channel_bootstrap.h");
@cInclude("aws/io/tls_channel_handler.h");
@cInclude("aws/io/event_loop.h");
@cInclude("aws/io/socket.h");
@cInclude("aws/io/stream.h");
});
const CN_NORTH_1_HASH = std.hash_map.hashString("cn-north-1");
const CN_NORTHWEST_1_HASH = std.hash_map.hashString("cn-northwest-1");
const US_ISO_EAST_1_HASH = std.hash_map.hashString("us-iso-east-1");
const US_ISOB_EAST_1_HASH = std.hash_map.hashString("us-isob-east-1");
const httplog = std.log.scoped(.awshttp);
// Variables that can be re-used globally
var reference_count: u32 = 0;
var c_allocator: ?*c.aws_allocator = null;
var c_logger: c.aws_logger = .{
.vtable = null,
.allocator = null,
.p_impl = null,
};
// tls stuff initialized on demand, then destroyed in cDeinit
var tls_ctx_options: ?*c.aws_tls_ctx_options = null;
var tls_ctx: ?*c.aws_tls_ctx = null;
pub const AwsError = error{
AddHeaderError,
AlpnError,
CredentialsError,
HttpClientConnectError,
HttpRequestError,
SignableError,
SigningInitiationError,
TlsError,
RequestCreateError,
SetupConnectionError,
StatusCodeError,
SetRequestMethodError,
SetRequestPathError,
};
pub const Options = struct {
region: []const u8 = "aws-global",
dualstack: bool = false,
sigv4_service_name: ?[]const u8 = null,
};
const SigningOptions = struct {
region: []const u8 = "aws-global",
service: []const u8,
};
const HttpResult = struct {
response_code: u16, // actually 3 digits can fit in u10
body: []const u8,
allocator: *std.mem.Allocator,
pub fn deinit(self: HttpResult) void {
self.allocator.free(self.body);
httplog.debug("http result deinit complete", .{});
return;
}
};
const Header = struct {
name: []const u8,
value: []const u8,
};
const EndPoint = struct {
uri: []const u8,
host: []const u8,
scheme: []const u8,
port: u16,
allocator: *std.mem.Allocator,
fn deinit(self: EndPoint) void {
self.allocator.free(self.uri);
}
};
fn cInit(allocator: *std.mem.Allocator) void {
// TODO: what happens if we actually get an allocator?
httplog.debug("auth init", .{});
c_allocator = c.aws_default_allocator();
// TODO: Grab logging level from environment
// See levels here:
// https://github.com/awslabs/aws-c-common/blob/ce964ca459759e685547e8aa95cada50fd078eeb/include/aws/common/logging.h#L13-L19
// We set this to FATAL mostly because we're handling errors for the most
// part here in zig-land. We would therefore set up for something like
// AWS_LL_WARN, but the auth library is bubbling up an AWS_LL_ERROR
// level message about not being able to open an aws config file. This
// could be an error, but we don't need to panic people if configuration
// is done via environment variables
var logger_options = c.aws_logger_standard_options{
// .level = .AWS_LL_WARN,
// .level = .AWS_LL_INFO,
// .level = .AWS_LL_DEBUG,
// .level = .AWS_LL_TRACE,
.level = .AWS_LL_FATAL,
.file = c.get_std_err(),
.filename = null,
};
const rc = c.aws_logger_init_standard(&c_logger, c_allocator, &logger_options);
if (rc != c.AWS_OP_SUCCESS) {
std.debug.panic("Could not configure logging: {s}", .{c.aws_error_debug_str(c.aws_last_error())});
}
c.aws_logger_set(&c_logger);
// auth could use http library, so we'll init http, then auth
// TODO: determine deallocation of ca_path
c.aws_http_library_init(c_allocator);
c.aws_auth_library_init(c_allocator);
}
fn cDeinit() void { // probably the wrong name
if (tls_ctx) |ctx| {
httplog.debug("tls_ctx deinit start", .{});
c.aws_tls_ctx_release(ctx);
httplog.debug("tls_ctx deinit end", .{});
}
if (tls_ctx_options) |opts| {
// See:
// https://github.com/awslabs/aws-c-io/blob/6c7bae503961545c5e99c6c836c4b37749cfc4ad/source/tls_channel_handler.c#L25
//
// The way this structure is constructed (setupTls/makeRequest), the only
// thing we need to clean up here is the alpn_list, which is set by
// aws_tls_ctx_options_set_alpn_list to a constant value. My guess here
// is that memory is not allocated - the pointer is looking at the program data.
// So the pointer is non-zero, but cannot be deallocated, and we segfault
httplog.debug("tls_ctx_options deinit unnecessary - skipping", .{});
// log.debug("tls_ctx_options deinit start. alpn_list: {*}", .{opts.alpn_list});
// c.aws_string_destroy(opts.alpn_list);
// c.aws_tls_ctx_options_clean_up(opts);
// log.debug("tls_ctx_options deinit end", .{});
}
c.aws_http_library_clean_up();
httplog.debug("auth clean up start", .{});
c.aws_auth_library_clean_up();
httplog.debug("auth clean up complete", .{});
}
pub const AwsHttp = struct {
allocator: *std.mem.Allocator,
bootstrap: *c.aws_client_bootstrap,
resolver: *c.aws_host_resolver,
eventLoopGroup: *c.aws_event_loop_group,
credentialsProvider: *c.aws_credentials_provider,
const Self = @This();
pub fn init(allocator: *std.mem.Allocator) Self {
if (reference_count == 0) cInit(allocator);
reference_count += 1;
httplog.debug("auth ref count: {}", .{reference_count});
// TODO; determine appropriate lifetime for the bootstrap and credentials'
// provider
// Mostly stolen from aws_c_auth/credentials_tests.c
const el_group = c.aws_event_loop_group_new_default(c_allocator, 1, null);
var resolver_options = c.aws_host_resolver_default_options{
.el_group = el_group,
.max_entries = 8,
.shutdown_options = null, // not set in test
.system_clock_override_fn = null, // not set in test
};
const resolver = c.aws_host_resolver_new_default(c_allocator, &resolver_options);
const bootstrap_options = c.aws_client_bootstrap_options{
.host_resolver = resolver,
.on_shutdown_complete = null, // was set in test
.host_resolution_config = null,
.user_data = null,
.event_loop_group = el_group,
};
const bootstrap = c.aws_client_bootstrap_new(c_allocator, &bootstrap_options);
const provider_chain_options = c.aws_credentials_provider_chain_default_options{
.bootstrap = bootstrap,
.shutdown_options = c.aws_credentials_provider_shutdown_options{
.shutdown_callback = null, // was set on test
.shutdown_user_data = null,
},
};
return .{
.allocator = allocator,
.bootstrap = bootstrap,
.resolver = resolver,
.eventLoopGroup = el_group,
.credentialsProvider = c.aws_credentials_provider_new_chain_default(c_allocator, &provider_chain_options),
};
}
pub fn deinit(self: *AwsHttp) void {
if (reference_count > 0)
reference_count -= 1;
httplog.debug("deinit: auth ref count: {}", .{reference_count});
c.aws_credentials_provider_release(self.credentialsProvider);
// TODO: Wait for provider shutdown? https://github.com/awslabs/aws-c-auth/blob/c394e30808816a8edaab712e77f79f480c911d3a/tests/credentials_tests.c#L197
c.aws_client_bootstrap_release(self.bootstrap);
c.aws_host_resolver_release(self.resolver);
c.aws_event_loop_group_release(self.eventLoopGroup);
if (reference_count == 0) {
cDeinit();
httplog.debug("Deinit complete", .{});
}
}
/// callApi allows the calling of AWS APIs through a higher-level interface.
/// It will calculate the appropriate endpoint and action parameters for the
/// service called, and will set up the signing options. The return
/// value is simply a raw HttpResult
pub fn callApi(self: Self, service: []const u8, body: []const u8, options: Options) !HttpResult {
const endpoint = try regionSubDomain(self.allocator, service, options.region, options.dualstack);
defer endpoint.deinit();
httplog.debug("Calling endpoint {s}", .{endpoint.uri});
httplog.debug("Body\n====\n{s}\n====", .{body});
const signing_options: SigningOptions = .{
.region = options.region,
.service = if (options.sigv4_service_name) |name| name else service,
};
return try self.makeRequest(endpoint, "POST", "/", body, signing_options);
}
/// makeRequest is a low level http/https function that can be used inside
/// or outside the context of AWS services. To use it outside AWS, simply
/// pass a null value in for signing_options.
///
/// Otherwise, it will simply take a URL endpoint (without path information),
/// HTTP method (e.g. GET, POST, etc.), and request body.
///
/// At the moment this does not allow the controlling of headers
/// This is likely to change. Current headers are:
///
/// Accept: application/json
/// User-Agent: zig-aws 1.0, Powered by the AWS Common Runtime.
/// Content-Type: application/x-www-form-urlencoded
/// Content-Length: (length of body)
///
/// Return value is an HttpResult, which will need the caller to deinit().
/// HttpResult currently contains the body only. The addition of Headers
/// and return code would be a relatively minor change
pub fn makeRequest(self: Self, endpoint: EndPoint, method: []const u8, path: []const u8, body: []const u8, signing_options: ?SigningOptions) !HttpResult {
// Since we're going to pass these into C-land, we need to make sure
// our inputs have sentinals
const method_z = try self.allocator.dupeZ(u8, method);
defer self.allocator.free(method_z);
const path_z = try self.allocator.dupeZ(u8, path);
defer self.allocator.free(path_z);
const body_z = try self.allocator.dupeZ(u8, body);
defer self.allocator.free(body_z);
// TODO: Try to re-encapsulate this
// var http_request = try createRequest(method, path, body);
// TODO: Likely this should be encapsulated more
var http_request = c.aws_http_message_new_request(c_allocator);
defer c.aws_http_message_release(http_request);
if (c.aws_http_message_set_request_method(http_request, c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, method_z))) != c.AWS_OP_SUCCESS)
return AwsError.SetRequestMethodError;
if (c.aws_http_message_set_request_path(http_request, c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, path_z))) != c.AWS_OP_SUCCESS)
return AwsError.SetRequestPathError;
httplog.debug("body length: {d}", .{body.len});
const body_cursor = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, body_z));
const request_body = c.aws_input_stream_new_from_cursor(c_allocator, &body_cursor);
defer c.aws_input_stream_destroy(request_body);
if (body.len > 0) {
c.aws_http_message_set_body_stream(http_request, request_body);
}
// End CreateRequest. This should return a struct with a deinit function that can do
// destroys, etc
var context = RequestContext{
.allocator = self.allocator,
};
defer context.deinit();
var tls_connection_options: ?*c.aws_tls_connection_options = null;
const host = try self.allocator.dupeZ(u8, endpoint.host);
defer self.allocator.free(host);
try self.addHeaders(http_request.?, host, body);
if (std.mem.eql(u8, endpoint.scheme, "https")) {
// TODO: Figure out why this needs to be inline vs function call
// tls_connection_options = try self.setupTls(host);
if (tls_ctx_options == null) {
httplog.debug("Setting up tls options", .{});
var opts: c.aws_tls_ctx_options = .{
.allocator = c_allocator,
.minimum_tls_version = @intToEnum(c.aws_tls_versions, c.AWS_IO_TLS_VER_SYS_DEFAULTS),
.cipher_pref = @intToEnum(c.aws_tls_cipher_pref, c.AWS_IO_TLS_CIPHER_PREF_SYSTEM_DEFAULT),
.ca_file = c.aws_byte_buf_from_c_str(""),
.ca_path = c.aws_string_new_from_c_str(c_allocator, ""),
.alpn_list = null,
.certificate = c.aws_byte_buf_from_c_str(""),
.private_key = c.aws_byte_buf_from_c_str(""),
.max_fragment_size = 0,
.verify_peer = true,
};
tls_ctx_options = &opts;
c.aws_tls_ctx_options_init_default_client(tls_ctx_options.?, c_allocator);
// h2;http/1.1
if (c.aws_tls_ctx_options_set_alpn_list(tls_ctx_options, "http/1.1") != c.AWS_OP_SUCCESS) {
httplog.alert("Failed to load alpn list with error {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
return AwsError.AlpnError;
}
tls_ctx = c.aws_tls_client_ctx_new(c_allocator, tls_ctx_options.?);
if (tls_ctx == null) {
std.debug.panic("Failed to initialize TLS context with error {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
}
httplog.debug("tls options setup applied", .{});
}
var conn_opts = c.aws_tls_connection_options{
.alpn_list = null,
.server_name = null,
.on_negotiation_result = null,
.on_data_read = null,
.on_error = null,
.user_data = null,
.ctx = null,
.advertise_alpn_message = false,
.timeout_ms = 0,
};
tls_connection_options = &conn_opts;
c.aws_tls_connection_options_init_from_ctx(tls_connection_options, tls_ctx);
var host_var = host;
var host_cur = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, host_var));
if (c.aws_tls_connection_options_set_server_name(tls_connection_options, c_allocator, &host_cur) != c.AWS_OP_SUCCESS) {
httplog.alert("Failed to set servername with error {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
return AwsError.TlsError;
}
}
if (signing_options) |opts| try self.signRequest(http_request.?, opts);
const socket_options = c.aws_socket_options{
.type = @intToEnum(c.aws_socket_type, c.AWS_SOCKET_STREAM),
.domain = @intToEnum(c.aws_socket_domain, c.AWS_SOCKET_IPV4),
.connect_timeout_ms = 3000, // TODO: change hardcoded 3s value
.keep_alive_timeout_sec = 0,
.keepalive = false,
.keep_alive_interval_sec = 0,
// If set, sets the number of keep alive probes allowed to fail before the connection is considered
// lost. If zero OS defaults are used. On Windows, this option is meaningless until Windows 10 1703.
.keep_alive_max_failed_probes = 0,
};
const http_client_options = c.aws_http_client_connection_options{
.self_size = @sizeOf(c.aws_http_client_connection_options),
.socket_options = &socket_options,
.allocator = c_allocator,
.port = endpoint.port,
.host_name = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, host)),
.bootstrap = self.bootstrap,
.initial_window_size = c.SIZE_MAX,
.tls_options = tls_connection_options,
.user_data = &context,
.proxy_options = null,
.monitoring_options = null,
.http1_options = null,
.http2_options = null,
.manual_window_management = false,
.on_setup = connectionSetupCallback,
.on_shutdown = connectionShutdownCallback,
};
if (c.aws_http_client_connect(&http_client_options) != c.AWS_OP_SUCCESS) {
httplog.alert("HTTP client connect failed with {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
return AwsError.HttpClientConnectError;
}
// TODO: Timeout
// Wait for connection to setup
while (!context.connection_complete.load(.SeqCst)) {
std.time.sleep(1 * std.time.ns_per_ms);
}
if (context.return_error) |e| return e;
const request_options = c.aws_http_make_request_options{
.self_size = @sizeOf(c.aws_http_make_request_options),
.on_response_headers = incomingHeadersCallback,
.on_response_header_block_done = null,
.on_response_body = incomingBodyCallback,
.on_complete = requestCompleteCallback,
.user_data = @ptrCast(*c_void, &context),
.request = http_request,
};
const stream = c.aws_http_connection_make_request(context.connection, &request_options);
if (stream == null) {
httplog.alert("failed to create request.", .{});
return AwsError.RequestCreateError;
}
if (c.aws_http_stream_activate(stream) != c.AWS_OP_SUCCESS) {
httplog.alert("HTTP request failed with {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
return AwsError.HttpRequestError;
}
// TODO: Timeout
while (!context.request_complete.load(.SeqCst)) {
std.time.sleep(1 * std.time.ns_per_ms);
}
httplog.debug("request_complete. Response code {d}", .{context.response_code.?});
httplog.debug("headers:", .{});
for (context.headers.?.items) |h| {
httplog.debug(" {s}: {s}", .{ h.name, h.value });
}
httplog.debug("raw response body:\n{s}", .{context.body});
// Connection will stay alive until stream completes
c.aws_http_connection_release(context.connection);
context.connection = null;
if (tls_connection_options) |opts| {
c.aws_tls_connection_options_clean_up(opts);
}
var final_body: []const u8 = "";
if (context.body) |b| {
final_body = b;
}
// Headers would need to be allocated/copied into HttpResult similar
// to RequestContext, so we'll leave this as a later excercise
// if it becomes necessary
const rc = HttpResult{
.response_code = context.response_code.?,
.body = final_body,
.allocator = self.allocator,
};
return rc;
}
// TODO: Re-encapsulate or delete this function. It is not currently
// used and will not be touched by the compiler
fn createRequest(method: []const u8, path: []const u8, body: []const u8) !*c.aws_http_message {
// TODO: Likely this should be encapsulated more
var http_request = c.aws_http_message_new_request(c_allocator);
if (c.aws_http_message_set_request_method(http_request, c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, method))) != c.AWS_OP_SUCCESS)
return AwsError.SetRequestMethodError;
if (c.aws_http_message_set_request_path(http_request, c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, path))) != c.AWS_OP_SUCCESS)
return AwsError.SetRequestPathError;
const body_cursor = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, body));
const request_body = c.aws_input_stream_new_from_cursor(c_allocator, &body_cursor);
defer c.aws_input_stream_destroy(request_body);
c.aws_http_message_set_body_stream(http_request, request_body);
return http_request.?;
}
// TODO: Re-encapsulate or delete this function. It is not currently
// used and will not be touched by the compiler
fn setupTls(self: Self, host: []const u8) !*c.aws_tls_connection_options {
if (tls_ctx_options == null) {
httplog.debug("Setting up tls options", .{});
var opts: c.aws_tls_ctx_options = .{
.allocator = c_allocator,
.minimum_tls_version = @intToEnum(c.aws_tls_versions, c.AWS_IO_TLS_VER_SYS_DEFAULTS),
.cipher_pref = @intToEnum(c.aws_tls_cipher_pref, c.AWS_IO_TLS_CIPHER_PREF_SYSTEM_DEFAULT),
.ca_file = c.aws_byte_buf_from_c_str(""),
.ca_path = c.aws_string_new_from_c_str(c_allocator, ""),
.alpn_list = null,
.certificate = c.aws_byte_buf_from_c_str(""),
.private_key = c.aws_byte_buf_from_c_str(""),
.max_fragment_size = 0,
.verify_peer = true,
};
tls_ctx_options = &opts;
c.aws_tls_ctx_options_init_default_client(tls_ctx_options.?, c_allocator);
// h2;http/1.1
if (c.aws_tls_ctx_options_set_alpn_list(tls_ctx_options, "http/1.1") != c.AWS_OP_SUCCESS) {
httplog.alert("Failed to load alpn list with error {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
return AwsError.AlpnError;
}
tls_ctx = c.aws_tls_client_ctx_new(c_allocator, tls_ctx_options.?);
if (tls_ctx == null) {
std.debug.panic("Failed to initialize TLS context with error {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
}
httplog.debug("tls options setup applied", .{});
}
var tls_connection_options = c.aws_tls_connection_options{
.alpn_list = null,
.server_name = null,
.on_negotiation_result = null,
.on_data_read = null,
.on_error = null,
.user_data = null,
.ctx = null,
.advertise_alpn_message = false,
.timeout_ms = 0,
};
c.aws_tls_connection_options_init_from_ctx(&tls_connection_options, tls_ctx);
var host_var = host;
var host_cur = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, host_var));
if (c.aws_tls_connection_options_set_server_name(&tls_connection_options, c_allocator, &host_cur) != c.AWS_OP_SUCCESS) {
httplog.alert("Failed to set servername with error {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
return AwsError.TlsError;
}
return &tls_connection_options;
// if (app_ctx.uri.port) {
// port = app_ctx.uri.port;
// }
}
fn signRequest(self: Self, http_request: *c.aws_http_message, options: SigningOptions) !void {
const creds = try self.getCredentials();
defer c.aws_credentials_release(creds);
// print the access key. Creds are an opaque C type, so we
// use aws_credentials_get_access_key_id. That gets us an aws_byte_cursor,
// from which we create a new aws_string with the contents. We need
// to convert to c_str with aws_string_c_str
const access_key = c.aws_string_new_from_cursor(c_allocator, &c.aws_credentials_get_access_key_id(creds));
defer c.aws_mem_release(c_allocator, access_key);
// defer c_allocator.*.mem_release.?(c_allocator, access_key);
httplog.debug("Signing with access key: {s}", .{c.aws_string_c_str(access_key)});
const signable = c.aws_signable_new_http_request(c_allocator, http_request);
if (signable == null) {
httplog.warn("Could not create signable request", .{});
return AwsError.SignableError;
}
defer c.aws_signable_destroy(signable);
const signing_region = try std.fmt.allocPrintZ(self.allocator, "{s}", .{options.region});
defer self.allocator.free(signing_region);
const signing_service = try std.fmt.allocPrintZ(self.allocator, "{s}", .{options.service});
defer self.allocator.free(signing_service);
const temp_signing_config = c.bitfield_workaround_aws_signing_config_aws{
.algorithm = .AWS_SIGNING_ALGORITHM_V4,
.config_type = .AWS_SIGNING_CONFIG_AWS,
.signature_type = .AWS_ST_HTTP_REQUEST_HEADERS,
.region = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, signing_region)),
.service = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, signing_service)),
.should_sign_header = null,
.should_sign_header_ud = null,
.flags = c.bitfield_workaround_aws_signing_config_aws_flags{
.use_double_uri_encode = 0,
.should_normalize_uri_path = 0,
.omit_session_token = 1,
},
.signed_body_value = c.aws_byte_cursor_from_c_str(""),
.signed_body_header = .AWS_SBHT_X_AMZ_CONTENT_SHA256, //or AWS_SBHT_NONE
.credentials = creds,
.credentials_provider = self.credentialsProvider,
.expiration_in_seconds = 0,
};
var signing_config = c.new_aws_signing_config(c_allocator, &temp_signing_config);
defer c.aws_mem_release(c_allocator, signing_config);
var signing_result = AwsAsyncCallbackResult(c.aws_http_message){ .result = http_request };
var sign_result_request = AsyncResult(AwsAsyncCallbackResult(c.aws_http_message)){ .result = &signing_result };
if (c.aws_sign_request_aws(c_allocator, signable, fullCast([*c]const c.aws_signing_config_base, signing_config), signComplete, &sign_result_request) != c.AWS_OP_SUCCESS) {
const error_code = c.aws_last_error();
httplog.alert("Could not initiate signing request: {s}:{s}", .{ c.aws_error_name(error_code), c.aws_error_str(error_code) });
return AwsError.SigningInitiationError;
}
// Wait for callback. Note that execution, including real work of signing
// the http request, will continue in signComplete (below),
// then continue beyond this line
waitOnCallback(c.aws_http_message, &sign_result_request);
if (sign_result_request.result.error_code != c.AWS_ERROR_SUCCESS) {
return AwsError.SignableError;
}
}
/// It's my theory that the aws event loop has a trigger to corrupt the
/// signing result after this call completes. So the technique of assigning
/// now, using later will not work
fn signComplete(result: ?*c.aws_signing_result, error_code: c_int, user_data: ?*c_void) callconv(.C) void {
var async_result = userDataTo(AsyncResult(AwsAsyncCallbackResult(c.aws_http_message)), user_data);
var http_request = async_result.result.result;
async_result.sync.store(true, .SeqCst);
async_result.count += 1;
async_result.result.error_code = error_code;
if (result) |res| {
if (c.aws_apply_signing_result_to_http_request(http_request, c_allocator, result) != c.AWS_OP_SUCCESS) {
httplog.alert("Could not apply signing request to http request: {s}", .{c.aws_error_debug_str(c.aws_last_error())});
}
httplog.debug("signing result applied", .{});
} else {
httplog.alert("Did not receive signing result: {s}", .{c.aws_error_debug_str(c.aws_last_error())});
}
async_result.sync.store(false, .SeqCst);
}
fn addHeaders(self: Self, request: *c.aws_http_message, host: []const u8, body: []const u8) !void {
const accept_header = c.aws_http_header{
.name = c.aws_byte_cursor_from_c_str("Accept"),
.value = c.aws_byte_cursor_from_c_str("application/json"),
.compression = .AWS_HTTP_HEADER_COMPRESSION_USE_CACHE,
};
if (c.aws_http_message_add_header(request, accept_header) != c.AWS_OP_SUCCESS)
return AwsError.AddHeaderError;
const host_header = c.aws_http_header{
.name = c.aws_byte_cursor_from_c_str("Host"),
.value = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, host)),
.compression = .AWS_HTTP_HEADER_COMPRESSION_USE_CACHE,
};
if (c.aws_http_message_add_header(request, host_header) != c.AWS_OP_SUCCESS)
return AwsError.AddHeaderError;
const user_agent_header = c.aws_http_header{
.name = c.aws_byte_cursor_from_c_str("User-Agent"),
.value = c.aws_byte_cursor_from_c_str("zig-aws 1.0, Powered by the AWS Common Runtime."),
.compression = .AWS_HTTP_HEADER_COMPRESSION_USE_CACHE,
};
if (c.aws_http_message_add_header(request, user_agent_header) != c.AWS_OP_SUCCESS)
return AwsError.AddHeaderError;
// AWS does not seem to care about Accept-Encoding
// Accept-Encoding: identity
// Content-Type: application/x-www-form-urlencoded
// const accept_encoding_header = c.aws_http_header{
// .name = c.aws_byte_cursor_from_c_str("Accept-Encoding"),
// .value = c.aws_byte_cursor_from_c_str("identity"),
// .compression = .AWS_HTTP_HEADER_COMPRESSION_USE_CACHE,
// };
// if (c.aws_http_message_add_header(request, accept_encoding_header) != c.AWS_OP_SUCCESS)
// return AwsError.AddHeaderError;
// AWS *does* seem to care about Content-Type. I don't think this header
// will hold for all APIs
// TODO: Work out Content-type
const content_type_header = c.aws_http_header{
.name = c.aws_byte_cursor_from_c_str("Content-Type"),
.value = c.aws_byte_cursor_from_c_str("application/x-www-form-urlencoded"),
.compression = .AWS_HTTP_HEADER_COMPRESSION_USE_CACHE,
};
if (c.aws_http_message_add_header(request, content_type_header) != c.AWS_OP_SUCCESS)
return AwsError.AddHeaderError;
if (body.len > 0) {
const len = try std.fmt.allocPrintZ(self.allocator, "{d}", .{body.len});
// This defer seems to work ok, but I'm a bit concerned about why
defer self.allocator.free(len);
const content_length_header = c.aws_http_header{
.name = c.aws_byte_cursor_from_c_str("Content-Length"),
.value = c.aws_byte_cursor_from_c_str(@ptrCast([*c]const u8, len)),
.compression = .AWS_HTTP_HEADER_COMPRESSION_USE_CACHE,
};
if (c.aws_http_message_add_header(request, content_length_header) != c.AWS_OP_SUCCESS)
return AwsError.AddHeaderError;
}
}
fn connectionSetupCallback(connection: ?*c.aws_http_connection, error_code: c_int, user_data: ?*c_void) callconv(.C) void {
httplog.debug("connection setup callback start", .{});
var context = userDataTo(RequestContext, user_data);
if (error_code != c.AWS_OP_SUCCESS) {
httplog.alert("Failed to setup connection: {s}.", .{c.aws_error_debug_str(c.aws_last_error())});
context.return_error = AwsError.SetupConnectionError;
}
context.connection = connection;
context.connection_complete.store(true, .SeqCst);
httplog.debug("connection setup callback end", .{});
}
fn connectionShutdownCallback(connection: ?*c.aws_http_connection, error_code: c_int, user_data: ?*c_void) callconv(.C) void {
httplog.debug("connection shutdown callback start", .{});
httplog.debug("connection shutdown callback end", .{});
}
fn incomingHeadersCallback(stream: ?*c.aws_http_stream, header_block: c.aws_http_header_block, headers: [*c]const c.aws_http_header, num_headers: usize, user_data: ?*c_void) callconv(.C) c_int {
var context = userDataTo(RequestContext, user_data);
if (context.response_code == null) {
var status: c_int = 0;
if (c.aws_http_stream_get_incoming_response_status(stream, &status) == c.AWS_OP_SUCCESS) {
context.response_code = @intCast(u16, status); // RFC says this is a 3 digit number, so c_int is silly
httplog.debug("response status code from callback: {d}", .{status});
} else {
httplog.alert("could not get status code", .{});
context.return_error = AwsError.StatusCodeError;
}
}
for (headers[0..num_headers]) |header| {
const name = header.name.ptr[0..header.name.len];
const value = header.value.ptr[0..header.value.len];
httplog.debug("header from callback: {s}: {s}", .{ name, value });
context.addHeader(name, value) catch
httplog.alert("could not append header to request context", .{});
}
return c.AWS_OP_SUCCESS;
}
fn incomingBodyCallback(stream: ?*c.aws_http_stream, data: [*c]const c.aws_byte_cursor, user_data: ?*c_void) callconv(.C) c_int {
var context = userDataTo(RequestContext, user_data);
httplog.debug("inbound body, len {d}", .{data.*.len});
const array = @ptrCast(*const []u8, &data.*.ptr).*;
// Need this to be a slice because it does not necessarily have a \0 sentinal
const body_chunk = array[0..data.*.len];
context.appendToBody(body_chunk) catch
httplog.alert("could not append to body!", .{});
return c.AWS_OP_SUCCESS;
}
fn requestCompleteCallback(stream: ?*c.aws_http_stream, error_code: c_int, user_data: ?*c_void) callconv(.C) void {
var context = userDataTo(RequestContext, user_data);
context.request_complete.store(true, .SeqCst);
c.aws_http_stream_release(stream);
httplog.debug("request complete", .{});
}
fn getCredentials(self: Self) !*c.aws_credentials {
var credential_result = AwsAsyncCallbackResult(c.aws_credentials){};
var callback_results = AsyncResult(AwsAsyncCallbackResult(c.aws_credentials)){ .result = &credential_result };
const callback = awsAsyncCallbackResult(c.aws_credentials, "got credentials", assignCredentialsOnCallback);
const get_async_result =
c.aws_credentials_provider_get_credentials(self.credentialsProvider, callback, &callback_results);
waitOnCallback(c.aws_credentials, &callback_results);
if (credential_result.error_code != c.AWS_ERROR_SUCCESS) {
httplog.alert("Could not acquire credentials: {s}:{s}", .{ c.aws_error_name(credential_result.error_code), c.aws_error_str(credential_result.error_code) });
return AwsError.CredentialsError;
}
return credential_result.result orelse unreachable;
}
// Generic wait on callback function
fn waitOnCallback(comptime T: type, results: *AsyncResult(AwsAsyncCallbackResult(T))) void {
var done = false;
while (!done) {
// TODO: Timeout
// More context: https://github.com/ziglang/zig/blob/119fc318a753f57b55809e9256e823accba6b56a/lib/std/crypto/benchmark.zig#L45-L54
// var timer = try std.time.Timer.start();
// const start = timer.lap();
// while (offset < bytes) : (offset += block.len) {
// do work
//
// h.update(block[0..]);
// }
// mem.doNotOptimizeAway(&h);
// const end = timer.read();
//
// const elapsed_s = @intToFloat(f64, end - start) / time.ns_per_s;
while (results.sync.load(.SeqCst)) {
std.time.sleep(1 * std.time.ns_per_ms);
}
done = results.count >= results.requiredCount;
// TODO: Timeout
std.time.sleep(1 * std.time.ns_per_ms);
}
}
// Generic function that generates a type-specific funtion for callback use
fn awsAsyncCallback(comptime T: type, comptime message: []const u8) (fn (result: ?*T, error_code: c_int, user_data: ?*c_void) callconv(.C) void) {
const inner = struct {
fn func(userData: *AsyncResult(AwsAsyncCallbackResult(T)), apiData: ?*T) void {
userData.result.result = apiData;
}
};
return awsAsyncCallbackResult(T, message, inner.func);
}
// used by awsAsyncCallbackResult to cast our generic userdata void *
// into a type known to zig
fn userDataTo(comptime T: type, userData: ?*c_void) *T {
return @ptrCast(*T, @alignCast(@alignOf(T), userData));
}
// generic callback ability. Takes a function for the actual assignment
// If you need a standard assignment, use awsAsyncCallback instead
fn awsAsyncCallbackResult(comptime T: type, comptime message: []const u8, comptime resultAssignment: (fn (user: *AsyncResult(AwsAsyncCallbackResult(T)), apiData: ?*T) void)) (fn (result: ?*T, error_code: c_int, user_data: ?*c_void) callconv(.C) void) {
const inner = struct {
fn innerfunc(result: ?*T, error_code: c_int, user_data: ?*c_void) callconv(.C) void {
httplog.debug(message, .{});
var asyncResult = userDataTo(AsyncResult(AwsAsyncCallbackResult(T)), user_data);
asyncResult.sync.store(true, .SeqCst);
asyncResult.count += 1;
asyncResult.result.error_code = error_code;
resultAssignment(asyncResult, result);
// asyncResult.result.result = result;
asyncResult.sync.store(false, .SeqCst);
}
};
return inner.innerfunc;
}
fn assignCredentialsOnCallback(asyncResult: *AsyncResult(AwsAsyncCallbackResult(c.aws_credentials)), credentials: ?*c.aws_credentials) void {
if (asyncResult.result.result) |result| {
c.aws_credentials_release(result);
}
asyncResult.result.result = credentials;
if (credentials) |cred| {
c.aws_credentials_acquire(cred);
}
}
};
fn AsyncResult(comptime T: type) type {
return struct {
result: *T,
requiredCount: u32 = 1,
sync: std.atomic.Atomic(bool) = std.atomic.Atomic(bool).init(false),
count: u8 = 0,
};
}
fn AwsAsyncCallbackResult(comptime T: type) type {
return struct {
result: ?*T = null,
error_code: i32 = c.AWS_ERROR_SUCCESS,
};
}
fn fullCast(comptime T: type, val: anytype) T {
return @ptrCast(T, @alignCast(@alignOf(T), val));
}
fn regionSubDomain(allocator: *std.mem.Allocator, service: []const u8, region: []const u8, useDualStack: bool) !EndPoint {
const environment_override = std.os.getenv("AWS_ENDPOINT_URL");
if (environment_override) |override| {
const uri = try allocator.dupeZ(u8, override);
return endPointFromUri(allocator, uri);
}
// Fallback to us-east-1 if global endpoint does not exist.
const realregion = if (std.mem.eql(u8, region, "aws-global")) "us-east-1" else region;
const dualstack = if (useDualStack) ".dualstack" else "";
const domain = switch (std.hash_map.hashString(region)) {
US_ISO_EAST_1_HASH => "c2s.ic.gov",
CN_NORTH_1_HASH, CN_NORTHWEST_1_HASH => "amazonaws.com.cn",
US_ISOB_EAST_1_HASH => "sc2s.sgov.gov",
else => "amazonaws.com",
};
const uri = try std.fmt.allocPrintZ(allocator, "https://{s}{s}.{s}.{s}", .{ service, dualstack, realregion, domain });
const host = uri["https://".len..];
httplog.debug("host: {s}, scheme: {s}, port: {}", .{ host, "https", 443 });
return EndPoint{
.uri = uri,
.host = host,
.scheme = "https",
.port = 443,
.allocator = allocator,
};
}
/// creates an endpoint from a uri string.
///
/// allocator: Will be used only to construct the EndPoint struct
/// uri: string constructed in such a way that deallocation is needed
fn endPointFromUri(allocator: *std.mem.Allocator, uri: []const u8) !EndPoint {
var scheme: []const u8 = "";
var host: []const u8 = "";
var port: u16 = 443;
var host_start: usize = 0;
var host_end: usize = 0;
for (uri) |ch, i| {
switch (ch) {
':' => {
if (!std.mem.eql(u8, scheme, "")) {
// here to end is port - this is likely a bug if ipv6 address used
const rest_of_uri = uri[i + 1 ..];
port = try std.fmt.parseUnsigned(u16, rest_of_uri, 10);
host_end = i;
}
},
'/' => {
if (host_start == 0) {
host_start = i + 2;
scheme = uri[0 .. i - 1];
if (std.mem.eql(u8, scheme, "http")) {
port = 80;
} else {
port = 443;
}
}
},
else => continue,
}
}
if (host_end == 0) {
host_end = uri.len;
}
host = uri[host_start..host_end];
httplog.debug("host: {s}, scheme: {s}, port: {}", .{ host, scheme, port });
return EndPoint{
.uri = uri,
.host = host,
.scheme = scheme,
.allocator = allocator,
.port = port,
};
}
const RequestContext = struct {
connection: ?*c.aws_http_connection = null,
connection_complete: std.atomic.Atomic(bool) = std.atomic.Atomic(bool).init(false),
request_complete: std.atomic.Atomic(bool) = std.atomic.Atomic(bool).init(false),
return_error: ?AwsError = null,
allocator: *std.mem.Allocator,
body: ?[]const u8 = null,
response_code: ?u16 = null,
headers: ?std.ArrayList(Header) = null,
const Self = @This();
pub fn deinit(self: Self) void {
// We're going to leave it to the caller to free the body
// if (self.body) |b| self.allocator.free(b);
if (self.headers) |hs| {
for (hs.items) |h| {
// deallocate the copied values
self.allocator.free(h.name);
self.allocator.free(h.value);
}
// deallocate the structure itself
hs.deinit();
}
}
pub fn appendToBody(self: *Self, fragment: []const u8) !void {
var orig_body: []const u8 = "";
if (self.body) |b| {
orig_body = try self.allocator.dupeZ(u8, b);
self.allocator.free(b);
self.body = null;
}
defer self.allocator.free(orig_body);
self.body = try std.fmt.allocPrintZ(self.allocator, "{s}{s}", .{ orig_body, fragment });
}
pub fn addHeader(self: *Self, name: []const u8, value: []const u8) !void {
if (self.headers == null)
self.headers = std.ArrayList(Header).init(self.allocator);
const name_copy = try self.allocator.dupeZ(u8, name);
const value_copy = try self.allocator.dupeZ(u8, value);
try self.headers.?.append(.{
.name = name_copy,
.value = value_copy,
});
}
};