2022-01-18 01:27:59 +00:00
|
|
|
// From https://gist.github.com/WoodyAtHome/3ef50b17f0fa2860ac52b97af12f8d15
|
|
|
|
// Translated from German. We don't need any local time for this use case, and conversion
|
|
|
|
// really requires the TZ DB.
|
|
|
|
|
|
|
|
const std = @import("std");
|
|
|
|
|
|
|
|
pub const DateTime = struct { day: u8, month: u8, year: u16, hour: u8, minute: u8, second: u8 };
|
|
|
|
|
2022-02-15 22:21:17 +00:00
|
|
|
const SECONDS_PER_DAY = 86400; //* 24* 60 * 60 */
|
|
|
|
const DAYS_PER_YEAR = 365; //* Normal year (no leap year) */
|
|
|
|
|
2022-01-18 02:52:27 +00:00
|
|
|
pub fn timestampToDateTime(timestamp: i64) DateTime {
|
2022-01-18 01:27:59 +00:00
|
|
|
|
|
|
|
// aus https://de.wikipedia.org/wiki/Unixzeit
|
|
|
|
const unixtime = @intCast(u64, timestamp);
|
|
|
|
const DAYS_IN_4_YEARS = 1461; //* 4*365 + 1 */
|
|
|
|
const DAYS_IN_100_YEARS = 36524; //* 100*365 + 25 - 1 */
|
|
|
|
const DAYS_IN_400_YEARS = 146097; //* 400*365 + 100 - 4 + 1 */
|
|
|
|
const DAY_NUMBER_ADJUSTED_1970_01_01 = 719468; //* Day number relates to March 1st */
|
|
|
|
|
|
|
|
var dayN: u64 = DAY_NUMBER_ADJUSTED_1970_01_01 + unixtime / SECONDS_PER_DAY;
|
|
|
|
var seconds_since_midnight: u64 = unixtime % SECONDS_PER_DAY;
|
|
|
|
var temp: u64 = 0;
|
|
|
|
|
|
|
|
// Leap year rules for Gregorian Calendars
|
|
|
|
// Any year divisible by 100 is not a leap year unless also divisible by 400
|
|
|
|
temp = 4 * (dayN + DAYS_IN_100_YEARS + 1) / DAYS_IN_400_YEARS - 1;
|
|
|
|
var year = @intCast(u16, 100 * temp);
|
|
|
|
dayN -= DAYS_IN_100_YEARS * temp + temp / 4;
|
|
|
|
|
|
|
|
// For Julian calendars, each year divisible by 4 is a leap year
|
|
|
|
temp = 4 * (dayN + DAYS_PER_YEAR + 1) / DAYS_IN_4_YEARS - 1;
|
|
|
|
year += @intCast(u16, temp);
|
|
|
|
dayN -= DAYS_PER_YEAR * temp + temp / 4;
|
|
|
|
|
2022-01-18 02:52:27 +00:00
|
|
|
// dayN calculates the days of the year in relation to March 1
|
2022-01-18 01:27:59 +00:00
|
|
|
var month = @intCast(u8, (5 * dayN + 2) / 153);
|
|
|
|
var day = @intCast(u8, dayN - (@intCast(u64, month) * 153 + 2) / 5 + 1);
|
|
|
|
// 153 = 31+30+31+30+31 Days for the 5 months from March through July
|
|
|
|
// 153 = 31+30+31+30+31 Days for the 5 months from August through December
|
|
|
|
// 31+28 Days for January and February (see below)
|
|
|
|
// +2: Rounding adjustment
|
|
|
|
// +1: The first day in March is March 1st (not March 0)
|
|
|
|
|
|
|
|
month += 3; // Convert from the day that starts on March 1st, to a human year */
|
|
|
|
if (month > 12) { // months 13 and 14 become 1 (January) und 2 (February) of the next year
|
|
|
|
month -= 12;
|
|
|
|
year += 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
var hours = @intCast(u8, seconds_since_midnight / 3600);
|
|
|
|
var minutes = @intCast(u8, seconds_since_midnight % 3600 / 60);
|
|
|
|
var seconds = @intCast(u8, seconds_since_midnight % 60);
|
|
|
|
|
|
|
|
return DateTime{ .day = day, .month = month, .year = year, .hour = hours, .minute = minutes, .second = seconds };
|
|
|
|
}
|
|
|
|
|
2022-02-15 22:21:17 +00:00
|
|
|
/// Converts a string to a timestamp value. May not handle dates before the
|
|
|
|
/// epoch
|
|
|
|
pub fn parseIso8601Timestamp(data: []const u8) !i64 {
|
|
|
|
_ = data;
|
|
|
|
return error.NotImplemented;
|
|
|
|
|
|
|
|
// TODO: Use a parsing for loop with a state machine implementation
|
|
|
|
// to tell us where we are in the string
|
|
|
|
// if (data.len < 4) return error.NotEnoughData;
|
|
|
|
// var year = try std.fmt.parseInt(u8, data[0..4], 10);
|
|
|
|
//
|
|
|
|
// var month:u4 = 0;
|
|
|
|
// if (data.len > 5) {
|
|
|
|
// if (data[5] != '-') return error.InvalidCharacter;
|
|
|
|
// var next_dash = std.mem.indexOf(u8, data[6..], "-");
|
|
|
|
// if (next_dash == null)
|
|
|
|
// next_dash = data.len - 6;
|
|
|
|
// month = std.fmt.parseInt(u8, data[6..next_dash + 6], 10);
|
|
|
|
// }
|
|
|
|
// var day:u5 = 0;
|
|
|
|
// var hours: u5 = 0;
|
|
|
|
// var minutes: u6 = 0;
|
|
|
|
// var seconds: u6 = 0;
|
|
|
|
// var milliseconds: u9 = 0;
|
|
|
|
// ISO 8601 is complicated. We're going
|
|
|
|
}
|
|
|
|
|
|
|
|
fn dateTimeToTimestamp(datetime: DateTime) !i64 {
|
2022-02-16 01:28:27 +00:00
|
|
|
const epoch = DateTime{
|
|
|
|
.year = 1970,
|
|
|
|
.month = 1,
|
|
|
|
.day = 1,
|
|
|
|
.hour = 0,
|
|
|
|
.minute = 0,
|
|
|
|
.second = 0,
|
|
|
|
};
|
|
|
|
return secondsBetween(epoch, datetime);
|
|
|
|
}
|
|
|
|
|
|
|
|
const DateTimeToTimestampError = error{
|
|
|
|
DateTimeOutOfRange,
|
|
|
|
};
|
|
|
|
|
|
|
|
fn secondsBetween(start: DateTime, end: DateTime) DateTimeToTimestampError!i64 {
|
|
|
|
try validateDatetime(start);
|
|
|
|
try validateDatetime(end);
|
|
|
|
if (end.year < start.year) return -1 * try secondsBetween(end, start);
|
|
|
|
if (start.month != 1 or
|
|
|
|
start.day != 1 or
|
|
|
|
start.hour != 0 or
|
|
|
|
start.minute != 0 or
|
|
|
|
start.second != 0)
|
|
|
|
{
|
|
|
|
const seconds_into_start_year = secondsFromBeginningOfYear(
|
|
|
|
start.year,
|
|
|
|
start.month,
|
|
|
|
start.day,
|
|
|
|
start.hour,
|
|
|
|
start.minute,
|
|
|
|
start.second,
|
|
|
|
);
|
|
|
|
const new_start = DateTime{
|
|
|
|
.year = start.year,
|
|
|
|
.month = 1,
|
|
|
|
.day = 1,
|
|
|
|
.hour = 0,
|
|
|
|
.minute = 0,
|
|
|
|
.second = 0,
|
|
|
|
};
|
|
|
|
return (try secondsBetween(new_start, end)) - seconds_into_start_year;
|
|
|
|
}
|
|
|
|
const leap_years_between = leapYearsBetween(start.year, end.year);
|
2022-02-15 22:21:17 +00:00
|
|
|
var add_days: u1 = 0;
|
2022-02-16 01:28:27 +00:00
|
|
|
const years_diff = end.year - start.year;
|
2022-02-15 22:21:17 +00:00
|
|
|
std.log.debug("Years from epoch: {d}, Leap years: {d}", .{ years_diff, leap_years_between });
|
|
|
|
var days_diff: i32 = (years_diff * DAYS_PER_YEAR) + leap_years_between + add_days;
|
|
|
|
std.log.debug("Days with leap year, without month: {d}", .{days_diff});
|
|
|
|
|
|
|
|
const seconds_into_year = secondsFromBeginningOfYear(
|
2022-02-16 01:28:27 +00:00
|
|
|
end.year,
|
|
|
|
end.month,
|
|
|
|
end.day,
|
|
|
|
end.hour,
|
|
|
|
end.minute,
|
|
|
|
end.second,
|
2022-02-15 22:21:17 +00:00
|
|
|
);
|
|
|
|
return (days_diff * SECONDS_PER_DAY) + @as(i64, seconds_into_year);
|
|
|
|
}
|
|
|
|
|
2022-02-16 01:28:27 +00:00
|
|
|
fn validateDatetime(dt: DateTime) !void {
|
|
|
|
if (dt.month > 12 or
|
|
|
|
dt.day > 31 or
|
|
|
|
dt.hour >= 24 or
|
|
|
|
dt.minute >= 60 or
|
|
|
|
dt.second >= 60) return error.DateTimeOutOfRange;
|
|
|
|
}
|
|
|
|
|
2022-02-15 22:21:17 +00:00
|
|
|
fn secondsFromBeginningOfYear(year: u16, month: u8, day: u8, hour: u8, minute: u8, second: u8) u32 {
|
|
|
|
const current_year_is_leap_year = isLeapYear(year);
|
|
|
|
const leap_year_days_per_month: [12]u5 = .{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
|
|
const normal_days_per_month: [12]u5 = .{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
|
|
const days_per_month = if (current_year_is_leap_year) leap_year_days_per_month else normal_days_per_month;
|
|
|
|
var current_month: usize = 1;
|
|
|
|
var end_month = month;
|
|
|
|
var days_diff: u32 = 0;
|
|
|
|
while (current_month != end_month) {
|
|
|
|
days_diff += days_per_month[current_month - 1]; // months are 1-based vs array is 0-based
|
|
|
|
current_month += 1;
|
|
|
|
}
|
|
|
|
std.log.debug("Days with month, without day: {d}. Day of month {d}, will add {d} days", .{
|
|
|
|
days_diff,
|
|
|
|
day,
|
|
|
|
day - 1,
|
|
|
|
});
|
|
|
|
// We need -1 because we're not actually including the ending day (that's up to hour/minute)
|
|
|
|
// In other words, days in the month are 1-based, while hours/minutes are zero based
|
|
|
|
days_diff += day - 1;
|
|
|
|
std.log.debug("Total days diff: {d}", .{days_diff});
|
|
|
|
var seconds_diff: u32 = days_diff * SECONDS_PER_DAY;
|
|
|
|
|
|
|
|
// From here out, we want to get everything into seconds
|
|
|
|
seconds_diff += @as(u32, hour) * 60 * 60;
|
|
|
|
seconds_diff += @as(u32, minute) * 60;
|
|
|
|
seconds_diff += @as(u32, second);
|
|
|
|
|
|
|
|
return seconds_diff;
|
|
|
|
}
|
|
|
|
fn isLeapYear(year: u16) bool {
|
|
|
|
if (year % 4 != 0) return false;
|
|
|
|
if (year % 400 == 0) return true;
|
|
|
|
if (year % 100 == 0) return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
fn leapYearsBetween(start_year_inclusive: u16, end_year_exclusive: u16) u16 {
|
|
|
|
const start = std.math.min(start_year_inclusive, end_year_exclusive);
|
|
|
|
const end = std.math.max(start_year_inclusive, end_year_exclusive);
|
|
|
|
var current = start;
|
|
|
|
std.log.debug("Leap years starting from {d}, ending at {d}", .{ start, end });
|
|
|
|
while (current % 4 != 0 and current < end) {
|
|
|
|
current += 1;
|
|
|
|
}
|
|
|
|
if (current == end) return 0; // No leap years here. E.g. 1971-1973
|
|
|
|
// We're on a potential leap year, and now we can step by 4
|
|
|
|
var rc: u16 = 0;
|
|
|
|
while (current < end) {
|
|
|
|
if (current % 4 == 0) {
|
|
|
|
if (current % 100 != 0) {
|
|
|
|
std.log.debug("Year {d} is leap year", .{current});
|
|
|
|
rc += 1;
|
|
|
|
current += 4;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// We're on a century, which is normally not a leap year, unless
|
|
|
|
// it's divisible by 400
|
|
|
|
if (current % 400 == 0) {
|
|
|
|
std.log.debug("Year {d} is leap year", .{current});
|
|
|
|
rc += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
current += 4;
|
|
|
|
}
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2022-01-20 02:58:53 +00:00
|
|
|
fn printDateTime(dt: DateTime) void {
|
2022-01-18 01:27:59 +00:00
|
|
|
std.log.debug("{:0>4}-{:0>2}-{:0>2}T{:0>2}:{:0>2}:{:0<2}Z", .{
|
|
|
|
dt.year,
|
|
|
|
dt.month,
|
|
|
|
dt.day,
|
|
|
|
dt.hour,
|
|
|
|
dt.minute,
|
|
|
|
dt.second,
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn printNowUtc() void {
|
2022-01-18 02:52:27 +00:00
|
|
|
printDateTime(timestampToDateTime(std.time.timestamp()));
|
2022-01-18 01:27:59 +00:00
|
|
|
}
|
|
|
|
|
2022-02-15 22:21:17 +00:00
|
|
|
test "Convert timestamp to datetime" {
|
2022-01-18 02:52:27 +00:00
|
|
|
printDateTime(timestampToDateTime(std.time.timestamp()));
|
|
|
|
try std.testing.expectEqual(DateTime{ .year = 2020, .month = 8, .day = 28, .hour = 9, .minute = 32, .second = 27 }, timestampToDateTime(1598607147));
|
2022-01-18 01:27:59 +00:00
|
|
|
|
2022-01-18 02:52:27 +00:00
|
|
|
try std.testing.expectEqual(DateTime{ .year = 2020, .month = 11, .day = 1, .hour = 5, .minute = 6, .second = 7 }, timestampToDateTime(1604207167));
|
|
|
|
// Get time for date: https://wtools.io/convert-date-time-to-unix-time
|
|
|
|
try std.testing.expectEqual(DateTime{ .year = 2015, .month = 08, .day = 30, .hour = 12, .minute = 36, .second = 00 }, timestampToDateTime(1440938160));
|
2022-01-18 01:27:59 +00:00
|
|
|
}
|
2022-02-15 22:21:17 +00:00
|
|
|
|
|
|
|
test "Convert datetime to timestamp" {
|
|
|
|
try std.testing.expectEqual(@as(i64, 1598607147), try dateTimeToTimestamp(DateTime{ .year = 2020, .month = 8, .day = 28, .hour = 9, .minute = 32, .second = 27 }));
|
|
|
|
try std.testing.expectEqual(@as(i64, 1604207167), try dateTimeToTimestamp(DateTime{ .year = 2020, .month = 11, .day = 1, .hour = 5, .minute = 6, .second = 7 }));
|
|
|
|
try std.testing.expectEqual(@as(i64, 1440938160), try dateTimeToTimestamp(DateTime{ .year = 2015, .month = 08, .day = 30, .hour = 12, .minute = 36, .second = 00 }));
|
|
|
|
}
|
|
|
|
|
|
|
|
test "Convert ISO8601 string to timestamp" {
|
|
|
|
try std.testing.expectEqual(@as(i64, 1598607147), try dateTimeToTimestamp(DateTime{ .year = 2020, .month = 8, .day = 28, .hour = 9, .minute = 32, .second = 27 }));
|
|
|
|
try std.testing.expectEqual(@as(i64, 1604207167), try dateTimeToTimestamp(DateTime{ .year = 2020, .month = 11, .day = 1, .hour = 5, .minute = 6, .second = 7 }));
|
|
|
|
try std.testing.expectEqual(@as(i64, 1440938160), try dateTimeToTimestamp(DateTime{ .year = 2015, .month = 08, .day = 30, .hour = 12, .minute = 36, .second = 00 }));
|
|
|
|
}
|
2022-02-16 01:28:27 +00:00
|
|
|
test "Convert datetime to timestamp before 1970" {
|
|
|
|
try std.testing.expectEqual(@as(i64, -449392815), try dateTimeToTimestamp(DateTime{ .year = 1955, .month = 10, .day = 05, .hour = 16, .minute = 39, .second = 45 }));
|
|
|
|
}
|