aws-sdk-for-zig/codegen/src/Hasher.zig

187 lines
6.2 KiB
Zig
Raw Normal View History

const builtin = @import("builtin");
const std = @import("std");
const Hash = std.crypto.hash.sha2.Sha256;
const HashedFile = struct {
fs_path: []const u8,
normalized_path: []const u8,
hash: [Hash.digest_length]u8,
failure: Error!void,
const Error = std.fs.File.OpenError || std.fs.File.ReadError || std.fs.File.StatError;
fn lessThan(context: void, lhs: *const HashedFile, rhs: *const HashedFile) bool {
_ = context;
return std.mem.lessThan(u8, lhs.normalized_path, rhs.normalized_path);
}
};
const multihash_len = 1 + 1 + Hash.digest_length;
pub const hex_multihash_len = 2 * multihash_len;
const MultiHashHexDigest = [hex_multihash_len]u8;
const MultihashFunction = enum(u16) {
identity = 0x00,
sha1 = 0x11,
@"sha2-256" = 0x12,
@"sha2-512" = 0x13,
@"sha3-512" = 0x14,
@"sha3-384" = 0x15,
@"sha3-256" = 0x16,
@"sha3-224" = 0x17,
@"sha2-384" = 0x20,
@"sha2-256-trunc254-padded" = 0x1012,
@"sha2-224" = 0x1013,
@"sha2-512-224" = 0x1014,
@"sha2-512-256" = 0x1015,
@"blake2b-256" = 0xb220,
_,
};
const multihash_function: MultihashFunction = switch (Hash) {
std.crypto.hash.sha2.Sha256 => .@"sha2-256",
else => @compileError("unreachable"),
};
comptime {
// We avoid unnecessary uleb128 code in hexDigest by asserting here the
// values are small enough to be contained in the one-byte encoding.
std.debug.assert(@intFromEnum(multihash_function) < 127);
std.debug.assert(Hash.digest_length < 127);
}
const hex_charset = "0123456789abcdef";
pub fn hexDigest(digest: [Hash.digest_length]u8) [multihash_len * 2]u8 {
var result: [multihash_len * 2]u8 = undefined;
result[0] = hex_charset[@intFromEnum(multihash_function) >> 4];
result[1] = hex_charset[@intFromEnum(multihash_function) & 15];
result[2] = hex_charset[Hash.digest_length >> 4];
result[3] = hex_charset[Hash.digest_length & 15];
for (digest, 0..) |byte, i| {
result[4 + i * 2] = hex_charset[byte >> 4];
result[5 + i * 2] = hex_charset[byte & 15];
}
return result;
}
pub fn hex64(x: u64) [16]u8 {
var result: [16]u8 = undefined;
var i: usize = 0;
while (i < 8) : (i += 1) {
const byte = @as(u8, @truncate(x >> @as(u6, @intCast(8 * i))));
result[i * 2 + 0] = hex_charset[byte >> 4];
result[i * 2 + 1] = hex_charset[byte & 15];
}
return result;
}
pub fn computeDirectoryHash(
thread_pool: *std.Thread.Pool,
dir: std.fs.IterableDir,
) ![Hash.digest_length]u8 {
const gpa = thread_pool.allocator;
// We'll use an arena allocator for the path name strings since they all
// need to be in memory for sorting.
var arena_instance = std.heap.ArenaAllocator.init(gpa);
defer arena_instance.deinit();
const arena = arena_instance.allocator();
// Collect all files, recursively, then sort.
var all_files = std.ArrayList(*HashedFile).init(gpa);
defer all_files.deinit();
var walker = try dir.walk(gpa);
defer walker.deinit();
{
// The final hash will be a hash of each file hashed independently. This
// allows hashing in parallel.
var wait_group: std.Thread.WaitGroup = .{};
defer wait_group.wait();
while (try walker.next()) |entry| {
switch (entry.kind) {
.directory => continue,
.file => {},
else => return error.IllegalFileTypeInPackage,
}
const hashed_file = try arena.create(HashedFile);
const fs_path = try arena.dupe(u8, entry.path);
hashed_file.* = .{
.fs_path = fs_path,
.normalized_path = try normalizePath(arena, fs_path),
.hash = undefined, // to be populated by the worker
.failure = undefined, // to be populated by the worker
};
wait_group.start();
try thread_pool.spawn(workerHashFile, .{ dir.dir, hashed_file, &wait_group });
try all_files.append(hashed_file);
}
}
std.mem.sort(*HashedFile, all_files.items, {}, HashedFile.lessThan);
var hasher = Hash.init(.{});
var any_failures = false;
for (all_files.items) |hashed_file| {
hashed_file.failure catch |err| {
any_failures = true;
std.log.err("unable to hash '{s}': {s}", .{ hashed_file.fs_path, @errorName(err) });
};
hasher.update(&hashed_file.hash);
}
if (any_failures) return error.DirectoryHashUnavailable;
return hasher.finalResult();
}
fn workerHashFile(dir: std.fs.Dir, hashed_file: *HashedFile, wg: *std.Thread.WaitGroup) void {
defer wg.finish();
hashed_file.failure = hashFileFallible(dir, hashed_file);
}
fn hashFileFallible(dir: std.fs.Dir, hashed_file: *HashedFile) HashedFile.Error!void {
var buf: [8000]u8 = undefined;
var file = try dir.openFile(hashed_file.fs_path, .{});
defer file.close();
var hasher = Hash.init(.{});
hasher.update(hashed_file.normalized_path);
hasher.update(&.{ 0, @intFromBool(try isExecutable(file)) });
while (true) {
const bytes_read = try file.read(&buf);
if (bytes_read == 0) break;
hasher.update(buf[0..bytes_read]);
}
hasher.final(&hashed_file.hash);
}
/// Make a file system path identical independently of operating system path inconsistencies.
/// This converts backslashes into forward slashes.
fn normalizePath(arena: std.mem.Allocator, fs_path: []const u8) ![]const u8 {
const canonical_sep = '/';
if (std.fs.path.sep == canonical_sep)
return fs_path;
const normalized = try arena.dupe(u8, fs_path);
for (normalized) |*byte| {
switch (byte.*) {
std.fs.path.sep => byte.* = canonical_sep,
else => continue,
}
}
return normalized;
}
fn isExecutable(file: std.fs.File) !bool {
if (builtin.os.tag == .windows) {
// TODO check the ACL on Windows.
// Until this is implemented, this could be a false negative on
// Windows, which is why we do not yet set executable_bit_only above
// when unpacking the tarball.
return false;
} else {
const stat = try file.stat();
return (stat.mode & std.os.S.IXUSR) != 0;
}
}