FlexiLib/src/main.zig
Emil Lerch 3d3dab9c79
All checks were successful
Build / build (push) Successful in 1m36s
Build / sign (push) Successful in 37s
Build / deploy (push) Successful in 40s
allow lib more control in status reporting
2023-10-23 11:17:29 -07:00

644 lines
26 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const interface = @import("interface.zig");
const Watch = @import("Watch.zig");
const config = @import("config.zig");
const log = std.log.scoped(.main);
// logging options
pub const std_options = struct {
pub const log_level = switch (builtin.mode) {
.Debug => .debug,
.ReleaseSafe => .info,
.ReleaseFast, .ReleaseSmall => .err,
};
pub const log_scope_levels = &[_]std.log.ScopeLevel{
.{ .scope = .watch, .level = .info },
};
};
const serveFn = *const fn (*interface.Request) ?*interface.Response;
const zigInitFn = *const fn (*anyopaque) void;
const requestDeinitFn = *const fn () void;
const timeout = 250;
var watcher = Watch.init(executorChanged);
var watcher_thread: ?std.Thread = null;
// Timer used by processRequest to provide ttfb/ttlb data in output
var timer: ?std.time.Timer = null;
const FullReturn = struct {
response: []u8,
executor: *Executor,
};
// Executor structure, including functions that were found in the library
// and accounting. Also contains match data to determine if an executor
// applies
const Executor = struct {
// configuration
match_data: []const u8,
path: [:0]const u8,
// fields used at runtime to do real work
library: ?*anyopaque = null,
serveFn: ?serveFn = null,
zigInitFn: ?zigInitFn = null,
requestDeinitFn: ?requestDeinitFn = null,
// fields used for internal accounting
watch: ?usize = null,
drain_in_progress: std.atomic.Atomic(bool) = std.atomic.Atomic(bool).init(false),
load_in_progress: std.atomic.Atomic(bool) = std.atomic.Atomic(bool).init(false),
requests_in_flight: std.atomic.Atomic(usize) = std.atomic.Atomic(usize).init(0),
};
const SERVE_FN_NAME = "handle_request";
const PORT = 8069; // TODO: Update based on environment variable
var response_preallocation_kb: usize = 8; // We used to need 1kb, but the changes between zig 465272921 and fd6200eda
// ends up allocating about 4kb. Bumping this to 8kb gives plugins some room
var executors: []Executor = undefined;
var parsed_config: config.ParsedConfig = undefined;
/// Serves a single request. Finds executor, marshalls request data for the C
/// interface, calls the executor and marshalls data back
fn serve(allocator: *std.mem.Allocator, response: *std.http.Server.Response) !*FullReturn {
const executor = try getExecutor(response.request.target, response.request.headers);
errdefer _ = executor.requests_in_flight.fetchSub(1, .Monotonic);
if (executor.zigInitFn) |f|
f(allocator);
// Call external library
const method_tag = @tagName(response.request.method);
const headers = try toHeaders(allocator.*, response.request.headers);
var request_content: []u8 = &[_]u8{};
if (response.request.content_length) |l| {
request_content = try response.reader().readAllAlloc(allocator.*, @as(usize, l));
}
log.debug("{d} bytes read from request", .{request_content.len});
var request = interface.Request{
.target = response.request.target.ptr,
.target_len = response.request.target.len,
.method = @constCast(method_tag[0..].ptr),
.method_len = method_tag.len,
.headers = headers,
.headers_len = response.request.headers.list.items.len,
.content = request_content.ptr,
.content_len = request_content.len,
};
var serve_result = executor.serveFn.?(&request).?; // ok for this pointer deref to fail
log.debug("target: {s}", .{response.request.target});
log.debug("response ptr: {*}", .{serve_result.ptr});
var slice: []u8 = serve_result.ptr[0..serve_result.len];
log.debug("response body: {s}", .{slice});
if (serve_result.status != 0) {
response.status = @enumFromInt(serve_result.status);
if (serve_result.reason_len > 0) {
response.reason = serve_result.reason_ptr[0..serve_result.reason_len];
}
}
// Deal with results
var content_type_added = false;
for (0..serve_result.headers_len) |inx| {
const head = serve_result.headers[inx];
try response.headers.append(
head.name_ptr[0..head.name_len],
head.value_ptr[0..head.value_len],
);
// headers are case insensitive
content_type_added = std.ascii.eqlIgnoreCase(head.name_ptr[0..head.name_len], "content-type");
}
if (!content_type_added)
try response.headers.append("content-type", "text/plain");
// target is path
var rc = try allocator.create(FullReturn);
rc.executor = executor;
rc.response = slice;
return rc;
}
/// Gets and executor based on request data
fn getExecutor(requested_path: []const u8, headers: std.http.Headers) !*Executor {
var executor = blk: {
for (executors) |*exec| {
if (executorIsMatch(exec.match_data, requested_path, headers)) {
break :blk exec;
}
}
log.err("Could not find executor for target path '{s}'", .{requested_path});
return error.NoApplicableExecutor;
};
while (executor.drain_in_progress.load(.Acquire)) {
// we need to stand down and stand by
std.atomic.spinLoopHint(); // Let CPU know we're just hanging out
std.time.sleep(1 * std.time.ns_per_ms / 2);
}
// Tell everyone we're about to use this bad boy
// While requests_in_flight is >= 0, nobody should unload the library
_ = executor.requests_in_flight.fetchAdd(1, .Acquire);
errdefer _ = executor.requests_in_flight.fetchSub(1, .Release);
if (executor.serveFn != null) return executor;
executor.library = blk: {
if (executor.library) |l|
break :blk l;
// If the library is being reloaded and a bunch of requests come in,
// we could have multiple threads racing to load
// NOTE: I am not confident of the memory ordering here on tryCompareAndSwap
while (executor.load_in_progress.tryCompareAndSwap(false, true, .Acquire, .Acquire)) |_| {
// we need to stand down and stand by
std.atomic.spinLoopHint(); // Let CPU know we're just hanging out
std.time.sleep(1 * std.time.ns_per_ms / 2);
}
// we have the conch...lock others out
defer executor.load_in_progress.store(false, .Release);
if (executor.library) |l|
break :blk l; // someone beat us to the race..our defer above will take care of unlocking
log.info("library {s} requested but not loaded. Loading library", .{executor.path});
const l = try dlopen(executor.path);
errdefer if (std.c.dlclose(l) != 0)
@panic("System unstable: Error after library open and cannot close");
executor.watch = executor.watch orelse try watcher.addFileWatch(&executor.path);
break :blk l;
};
// std.c.dlerror();
const serve_fn = std.c.dlsym(executor.library.?, SERVE_FN_NAME);
if (serve_fn == null) return error.CouldNotLoadSymbolServe;
executor.serveFn = @ptrCast(serve_fn.?);
loadOptionalSymbols(executor);
return executor;
}
fn executorIsMatch(match_data: []const u8, requested_path: []const u8, headers: std.http.Headers) bool {
if (!std.mem.containsAtLeast(u8, match_data, 1, ":")) {
// match_data does not have a ':'. This means this is a straight path, without
// any header requirement. We can simply return a match prefix on the
// requested path
const rc = std.mem.startsWith(u8, requested_path, match_data);
if (rc) log.debug("executor match for path prefix '{s}'", .{match_data});
return rc;
}
const colon = std.mem.indexOf(u8, match_data, ":").?;
const header_needle = match_data[0..colon];
const header_inx = headers.firstIndexOf(header_needle) orelse return false;
// Apparently std.mem.split will return an empty first when the haystack starts
// with the delimiter
var split = std.mem.split(u8, std.mem.trim(u8, match_data[colon + 1 ..], "\t "), " ");
const header_value_needle = split.first();
const path_needle = split.next() orelse {
std.log.warn(
"Incorrect configuration. Header matching requires both header value and path prefix, space delimited. Key was '{s}'",
.{match_data},
);
return false;
};
// match_data includes some sort of header match as well. We assume the
// header match is a full match on the key (handled above)
// but a prefix match on the value
const request_header_value = headers.list.items[header_inx].value;
// (shoud this be case insensitive?)
if (!std.mem.startsWith(u8, request_header_value, header_value_needle)) return false;
// header value matches...return the path prefix match
const rc = std.mem.startsWith(u8, requested_path, path_needle);
if (rc) log.debug("executor match for header and path prefix '{s}'", .{match_data});
return rc;
}
/// Loads all optional symbols from the dynamic library. This has two entry
/// points, though the logic around the primary request handler is slighly
/// different in each case so we can't combine those two.
fn loadOptionalSymbols(executor: *Executor) void {
if (std.c.dlsym(executor.library.?, "request_deinit")) |s| {
executor.requestDeinitFn = @ptrCast(s);
}
if (std.c.dlsym(executor.library.?, "zigInit")) |s| {
executor.zigInitFn = @ptrCast(s);
}
}
/// Executor changed. This will be called by a sepearate thread that is
/// ultimately triggered from the operating system. This will wait for open
/// requests to that libary to complete, then lock out new requests until
/// the library is reloaded.
fn executorChanged(watch: usize) void {
// NOTE: This will be called off the main thread
log.debug("executor with watch {d} changed", .{watch});
for (executors) |*executor| {
if (executor.watch) |w| {
if (w == watch) {
if (executor.library) |l| {
executor.drain_in_progress.store(true, .Release);
defer executor.drain_in_progress.store(false, .Release);
while (executor.requests_in_flight.load(.Acquire) > 0) {
std.atomic.spinLoopHint();
std.time.sleep(1 * std.time.ns_per_ms / 2);
}
if (std.c.dlclose(l) != 0)
@panic("System unstable: Error after library open and cannot close");
log.debug("closed old library. reloading executor at: {s}", .{executor.path});
executor.library = dlopen(executor.path) catch {
log.warn("could not reload! error opening library", .{});
return;
};
var symbol = std.c.dlsym(executor.library.?, SERVE_FN_NAME);
if (symbol == null) {
log.warn("could not reload! error finding symbol", .{});
if (std.c.dlclose(executor.library.?) != 0)
@panic("System unstable: Error after library open and cannot close");
return;
}
executor.serveFn = @ptrCast(symbol);
loadOptionalSymbols(executor);
}
}
}
}
}
/// Wrapper to the c library to make us more ziggy
fn dlopen(path: [:0]const u8) !*anyopaque {
// We need now (and local) because we're about to call it
const lib = std.c.dlopen(path, std.c.RTLD.NOW);
if (lib) |l| return l;
return error.CouldNotOpenDynamicLibrary;
}
/// Exits the application, which is wired up to SIGINT. This is the only
/// exit from the application as the main function has an infinite loop
fn exitApplication(
_: i32,
_: *const std.os.siginfo_t,
_: ?*const anyopaque,
) callconv(.C) noreturn {
exitApp(0);
std.os.exit(0);
}
/// exitApp handles deinitialization for the application and any reporting
/// that needs to happen
fn exitApp(exitcode: u8) void {
if (exitcode == 0)
std.io.getStdOut().writer().print("termination request: stopping watch\n", .{}) catch {}
else
std.io.getStdErr().writer().print("abnormal termination: stopping watch\n", .{}) catch {};
watcher.stopWatch() catch @panic("could not stop watcher");
std.io.getStdOut().writer().print("exiting application\n", .{}) catch {};
watcher.deinit();
std.os.exit(exitcode);
// joining threads will hang...we're ultimately in a signal handler.
// But everything is shut down cleanly now, so I don't think it hurts to
// just kill it all (NOTE: from a practical perspective, we do not seem
// to get a clean shutdown in all cases)
// if (watcher_thread) |t|
// t.join();
}
/// reloadConfig is wired to SIGHUP and will reload all executors. In its
/// current state, this is not a safe function as no connection draining
/// has been implemented. Operates off the main thread
fn reloadConfig(
_: i32,
_: *const std.os.siginfo_t,
_: ?*const anyopaque,
) callconv(.C) void {
// TODO: Gracefully drain in flight requests and hold a lock here while
// we reload
var allocator = std.heap.raw_c_allocator; // raw allocator recommended for use in arenas
allocator.free(executors);
parsed_config.deinit();
executors = loadConfig(allocator) catch {
// TODO: Need to refactor so loadConfig brings back a struct with
// executors and parsed_config, then we can manage the lifecycle better
// and avoid this @panic call for more graceful handling
@panic("Could not reload config");
};
}
/// Installs all signal handlers for shutdown and configuration reload
fn installSignalHandler() !void {
var act = std.os.Sigaction{
.handler = .{ .sigaction = exitApplication },
.mask = std.os.empty_sigset,
.flags = (std.os.SA.SIGINFO | std.os.SA.RESTART | std.os.SA.RESETHAND),
};
try std.os.sigaction(std.os.SIG.INT, &act, null);
try std.os.sigaction(std.os.SIG.TERM, &act, null);
var hup_act = std.os.Sigaction{
.handler = .{ .sigaction = reloadConfig },
.mask = std.os.empty_sigset,
.flags = (std.os.SA.SIGINFO | std.os.SA.RESTART | std.os.SA.RESETHAND),
};
try std.os.sigaction(std.os.SIG.HUP, &hup_act, null);
}
pub fn main() !void {
defer exitApp(1);
// stdout is for the actual output of your application, for example if you
// are implementing gzip, then only the compressed bytes should be sent to
// stdout, not any debugging messages.
// const stdout_file = std.io.getStdOut().writer();
// var bw = std.io.bufferedWriter(stdout_file);
// const stdout = bw.writer();
var allocator = std.heap.raw_c_allocator; // raw allocator recommended for use in arenas
executors = try loadConfig(allocator);
defer allocator.free(executors);
defer parsed_config.deinit();
watcher_thread = try std.Thread.spawn(.{}, Watch.startWatch, .{&watcher});
var server = std.http.Server.init(allocator, .{ .reuse_address = true });
defer server.deinit();
const address = try std.net.Address.parseIp(
"0.0.0.0",
if (std.os.getenv("PORT")) |p| try std.fmt.parseInt(u16, p, 10) else PORT,
);
try server.listen(address);
const server_port = server.socket.listen_address.in.getPort();
log.info("listening on port: {d}", .{server_port});
if (builtin.os.tag == .linux)
log.info("pid: {d}", .{std.os.linux.getpid()});
try installSignalHandler();
response_preallocation_kb = if (std.os.getenv("RESPONSE_PREALLOCATION_KB")) |kb|
try std.fmt.parseInt(usize, kb, 10)
else
response_preallocation_kb;
var server_thread_count = if (std.os.getenv("SERVER_THREAD_COUNT")) |count|
try std.fmt.parseInt(usize, count, 10)
else switch (builtin.mode) {
.Debug => @min(4, try std.Thread.getCpuCount()),
else => try std.Thread.getCpuCount(),
};
switch (builtin.mode) {
.Debug => log.info("serving using {d} threads (debug build: capped at 4)", .{server_thread_count}),
else => log.info("serving using {d} threads", .{server_thread_count}),
}
var server_threads = try std.ArrayList(std.Thread).initCapacity(allocator, server_thread_count);
defer server_threads.deinit();
// Set up thread pool
for (0..server_thread_count) |inx| {
server_threads.appendAssumeCapacity(try std.Thread.spawn(
.{},
threadMain,
.{ allocator, &server, inx },
));
}
// main thread will no longer do anything
std.time.sleep(std.math.maxInt(u64));
for (server_threads.items) |thread| thread.join();
}
fn threadMain(allocator: std.mem.Allocator, server: *std.http.Server, thread_number: usize) !void {
// TODO: If we're in a thread pool we need to be careful with this...
const stdout_file = std.io.getStdOut().writer();
var bw = std.io.bufferedWriter(stdout_file);
const stdout = bw.writer();
log.info("starting server thread {d}, tid {d}", .{ thread_number, std.Thread.getCurrentId() });
var arena = std.heap.ArenaAllocator.init(allocator);
defer arena.deinit();
var aa = arena.allocator();
const bytes_preallocated = try preWarmArena(aa, &arena, response_preallocation_kb);
while (true) {
defer {
if (!arena.reset(.{ .retain_capacity = {} })) {
// reallocation failed, arena is degraded
log.warn("Arena reset failed and is degraded. Resetting arena", .{});
arena.deinit();
arena = std.heap.ArenaAllocator.init(allocator);
aa = arena.allocator();
}
}
processRequest(&aa, server, stdout) catch |e| {
log.err("Unexpected error processing request: {any}", .{e});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
};
try stdout.print(" (pre-alloc: {}, alloc: {})\n", .{ bytes_preallocated, arena.queryCapacity() });
try bw.flush();
}
}
fn loadConfig(allocator: std.mem.Allocator) ![]Executor {
log.info("loading config from 'proxy.ini'", .{});
// We will not watch this file - let it reload on SIGHUP
var config_file = try std.fs.cwd().openFile("proxy.ini", .{});
defer config_file.close();
parsed_config = try config.init(allocator).parse(config_file.reader());
var al = try std.ArrayList(Executor).initCapacity(allocator, parsed_config.key_value_map.keys().len);
defer al.deinit();
for (parsed_config.key_value_map.keys(), parsed_config.key_value_map.values()) |k, v| {
al.appendAssumeCapacity(.{
.match_data = k,
.path = v,
});
}
log.info("config loaded", .{});
return al.toOwnedSlice(); // TODO: This should return a struct with the parsed config and executors
}
/// main loop calls processRequest, which is responsible for the interface
/// with logs, connection accounting, etc. The work dealing with the request
/// itself is delegated to the serve function to work with the executor
fn processRequest(allocator: *std.mem.Allocator, server: *std.http.Server, writer: anytype) !void {
if (timer == null) timer = try std.time.Timer.start();
var tm = timer.?;
var res = try server.accept(.{ .allocator = allocator.* });
defer res.deinit();
defer _ = res.reset();
try res.wait(); // wait for client to send a complete request head
// I believe it's fair to start our timer after this is done
tm.reset();
// This is an nginx log:
// git.lerch.org 50.39.111.175 - - [16/May/2023:02:56:31 +0000] "POST /api/actions/runner.v1.RunnerService/FetchTask HTTP/2.0" 200 0 "-" "connect-go/1.2.0-dev (go1.20.1)" "172.20.0.5:3000"
// TODO: replicate this
try writer.print("{} - - \"{s} {s} {s}\"", .{
res.address,
@tagName(res.request.method),
res.request.target,
@tagName(res.request.version),
});
const errstr = "Internal Server Error\n";
var errbuf: [errstr.len]u8 = undefined;
var response_bytes = try std.fmt.bufPrint(&errbuf, errstr, .{});
var full_response = serve(allocator, &res) catch |e| brk: {
res.status = .internal_server_error;
// TODO: more about this particular request
log.err("Unexpected error from executor processing request: {any}", .{e});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
break :brk null;
};
defer {
// The call above converts uncaught errors to a null
// In request counter gets incremented during getExecutor
// Caught errors will get our in_flight counter decremented (see serve fn)
// - we cannot do this here because we may not have an executor at all
// This leaves this defer block as the only place we can/should decrement
// under normal conditions
if (full_response) |f| {
if (f.executor.requestDeinitFn) |d| d();
_ = f.executor.requests_in_flight.fetchSub(1, .Release);
}
}
if (full_response) |f|
response_bytes = f.response;
res.transfer_encoding = .{ .content_length = response_bytes.len };
try res.headers.append("connection", "close");
try writer.print(" {d} ttfb {d:.3}ms", .{ @intFromEnum(res.status), @as(f64, @floatFromInt(tm.read())) / std.time.ns_per_ms });
if (builtin.is_test) writeToTestBuffers(response_bytes, &res);
try res.do();
_ = try res.writer().writeAll(response_bytes);
try res.finish();
try writer.print(" {d} ttlb {d:.3}ms", .{
response_bytes.len,
@as(f64, @floatFromInt(tm.read())) / std.time.ns_per_ms,
});
}
fn toHeaders(allocator: std.mem.Allocator, headers: std.http.Headers) ![*]interface.Header {
var header_array = try std.ArrayList(interface.Header).initCapacity(allocator, headers.list.items.len);
for (headers.list.items) |kv| {
header_array.appendAssumeCapacity(.{
.name_ptr = @constCast(kv.name).ptr,
.name_len = kv.name.len,
.value_ptr = @constCast(kv.value).ptr,
.value_len = kv.value.len,
});
}
return header_array.items.ptr;
}
/// Allocates at least preallocated_kb kilobytes of ram for usage. Some overhead
/// will mean that more
fn preWarmArena(aa: std.mem.Allocator, arena: *std.heap.ArenaAllocator, preallocated_kb: usize) !usize {
if (preallocated_kb == 0) return 0;
// capacity 0 at this point
const warm_array = try aa.alloc(u8, 1024 * preallocated_kb); // after this, we are at 1569 (545 extra)
aa.free(warm_array);
log.debug(
"allocator preallocation. Limiting to: {d} bytes",
.{(arena.queryCapacity() + @as(usize, 1023)) / @as(usize, 1024) * 1024},
);
if (!arena.reset(.{ .retain_with_limit = (arena.queryCapacity() + @as(usize, 1023)) / @as(usize, 1024) * 1024 }))
log.warn("arena reset failed, arena degraded", .{});
var bytes_allocated = arena.queryCapacity();
log.debug("preallocated {d} bytes", .{bytes_allocated});
return bytes_allocated;
}
fn writeToTestBuffers(response: []const u8, res: *std.http.Server.Response) void {
_ = res;
log.debug("writing to test buffers", .{});
// This performs core dump...because we're in a separate thread?
// @memset(test_resp_buf, 0);
const errmsg = "response exceeds 1024 bytes";
const src = if (response.len < 1024) response else errmsg;
test_resp_buf_len = if (response.len < 1024) response.len else errmsg.len;
for (src, 0..) |b, i| test_resp_buf[i] = b;
for (test_resp_buf_len..1024) |i| test_resp_buf[i] = 0;
}
fn testRequest(request_bytes: []const u8) !void {
const allocator = std.testing.allocator;
executors = try loadConfig(allocator);
defer allocator.free(executors);
defer parsed_config.deinit();
var arena = std.heap.ArenaAllocator.init(allocator);
defer arena.deinit();
var server = std.http.Server.init(allocator, .{ .reuse_address = true });
defer server.deinit();
const address = try std.net.Address.parseIp("127.0.0.1", 0);
try server.listen(address);
const server_port = server.socket.listen_address.in.getPort();
var al = std.ArrayList(u8).init(allocator);
defer al.deinit();
var writer = al.writer();
var aa = arena.allocator();
var bytes_allocated: usize = 0;
// pre-warm
bytes_allocated = try preWarmArena(aa, &arena, response_preallocation_kb);
const server_thread = try std.Thread.spawn(
.{},
processRequest,
.{ &aa, &server, writer },
);
const stream = try std.net.tcpConnectToHost(allocator, "127.0.0.1", server_port);
defer stream.close();
_ = try stream.writeAll(request_bytes[0..]);
server_thread.join();
log.debug("Bytes allocated during request: {d}", .{arena.queryCapacity() - bytes_allocated});
log.debug("Stdout: {s}", .{al.items});
}
fn testGet(comptime path: []const u8) !void {
try testRequest("GET " ++ path ++ " HTTP/1.1\r\n" ++
"Accept: */*\r\n" ++
"\r\n");
}
fn testHostGet(comptime host: []const u8, comptime path: []const u8) !void {
try testRequest("GET " ++ path ++ " HTTP/1.1\r\n" ++
"Host: " ++ host ++ "\r\n" ++
"Accept: */*\r\n" ++
"\r\n");
}
test {
// To run nested container tests, either, call `refAllDecls` which will
// reference all declarations located in the given argument.
// `@This()` is a builtin function that returns the innermost container it is called from.
// In this example, the innermost container is this file (implicitly a struct).
std.testing.refAllDecls(@This());
std.testing.refAllDecls(config);
std.testing.refAllDecls(interface);
std.testing.refAllDecls(@import("main-lib.zig"));
}
var test_resp_buf: [1024]u8 = undefined;
var test_resp_buf_len: usize = undefined;
test "root path get" {
std.testing.log_level = .debug;
log.debug("", .{});
try testGet("/");
try std.testing.expectEqual(@as(usize, 2), test_resp_buf_len);
try std.testing.expectEqualStrings(" 1", test_resp_buf[0..test_resp_buf_len]);
}
test "root path, alternative host get" {
std.testing.log_level = .debug;
log.debug("", .{});
try testHostGet("iam.aws.lerch.org", "/");
try std.testing.expectEqualStrings("iam response", test_resp_buf[0..test_resp_buf_len]);
}