const std = @import("std"); // Although this function looks imperative, note that its job is to // declaratively construct a build graph that will be executed by an external // runner. pub fn build(b: *std.Build) !void { // Standard target options allows the person running `zig build` to choose // what target to build for. Here we do not override the defaults, which // means any target is allowed, and the default is native. Other options // for restricting supported target set are available. const target = b.standardTargetOptions(.{}); // Standard optimization options allow the person running `zig build` to select // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // set a preferred release mode, allowing the user to decide how to optimize. const optimize = b.standardOptimizeOption(.{}); const mvzr_dep = b.dependency("mvzr", .{}); const zeit_dep = b.dependency("zeit", .{}); // This creates a "module", which represents a collection of source files alongside // some compilation options, such as optimization mode and linked system libraries. // Every executable or library we compile will be based on one or more modules. const lib_mod = b.createModule(.{ // `root_source_file` is the Zig "entry point" of the module. If a module // only contains e.g. external object files, you can make this `null`. // In this case the main source file is merely a path, however, in more // complicated build scripts, this could be a generated file. .root_source_file = b.path("src/root.zig"), .target = target, .optimize = optimize, }); lib_mod.addImport("mvzr", mvzr_dep.module("mvzr")); lib_mod.addImport("zeit", zeit_dep.module("zeit")); // We will also create a module for our other entry point, 'main.zig'. const exe_mod = b.createModule(.{ // `root_source_file` is the Zig "entry point" of the module. If a module // only contains e.g. external object files, you can make this `null`. // In this case the main source file is merely a path, however, in more // complicated build scripts, this could be a generated file. .root_source_file = b.path("src/main.zig"), .target = target, .optimize = optimize, }); // Modules can depend on one another using the `std.Build.Module.addImport` function. // This is what allows Zig source code to use `@import("foo")` where 'foo' is not a // file path. In this case, we set up `exe_mod` to import `lib_mod`. exe_mod.addImport("syncthing_events_lib", lib_mod); // Now, we will create a static library based on the module we created above. // This creates a `std.Build.Step.Compile`, which is the build step responsible // for actually invoking the compiler. const lib = b.addLibrary(.{ .linkage = .static, .name = "syncthing_events", .root_module = lib_mod, }); // This declares intent for the library to be installed into the standard // location when the user invokes the "install" step (the default step when // running `zig build`). b.installArtifact(lib); // This creates another `std.Build.Step.Compile`, but this one builds an executable // rather than a static library. const exe = b.addExecutable(.{ .name = "syncthing_events", .root_module = exe_mod, }); // This declares intent for the executable to be installed into the // standard location when the user invokes the "install" step (the default // step when running `zig build`). const no_bin = b.option(bool, "no-bin", "skip emitting binary") orelse false; const no_llvm = b.option(bool, "no-llvm", "skip use of llvm") orelse false; lib.use_llvm = !no_llvm; exe.use_llvm = !no_llvm; if (no_bin) { b.getInstallStep().dependOn(&exe.step); } else { b.installArtifact(exe); } // This *creates* a Run step in the build graph, to be executed when another // step is evaluated that depends on it. The next line below will establish // such a dependency. const run_cmd = b.addRunArtifact(exe); // By making the run step depend on the install step, it will be run from the // installation directory rather than directly from within the cache directory. // This is not necessary, however, if the application depends on other installed // files, this ensures they will be present and in the expected location. run_cmd.step.dependOn(b.getInstallStep()); // This allows the user to pass arguments to the application in the build // command itself, like this: `zig build run -- arg1 arg2 etc` if (b.args) |args| { run_cmd.addArgs(args); } // This creates a build step. It will be visible in the `zig build --help` menu, // and can be selected like this: `zig build run` // This will evaluate the `run` step rather than the default, which is "install". const run_step = b.step("run", "Run the app"); run_step.dependOn(&run_cmd.step); // Creates a step for unit testing. This only builds the test executable // but does not run it. const lib_unit_tests = b.addTest(.{ .root_module = lib_mod, }); const run_lib_unit_tests = b.addRunArtifact(lib_unit_tests); const exe_unit_tests = b.addTest(.{ .root_module = exe_mod, }); const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests); // Similar to creating the run step earlier, this exposes a `test` step to // the `zig build --help` menu, providing a way for the user to request // running the unit tests. const test_step = b.step("test", "Run unit tests"); test_step.dependOn(&run_lib_unit_tests.step); test_step.dependOn(&run_exe_unit_tests.step); try docker(b, exe); } fn docker(b: *std.Build, compile: *std.Build.Step.Compile) !void { const DockerTarget = struct { platform: []const u8, target: std.Target.Query, }; // From docker source: // https://github.com/containerd/containerd/blob/52f02c3aa1e7ccd448060375c821cae4e3300cdb/test/init-buildx.sh#L45 // Platforms: linux/amd64, linux/arm64, linux/riscv64, linux/ppc64le, linux/s390x, linux/386, linux/arm/v7, linux/arm/v6 const docker_targets = [_]DockerTarget{ .{ .platform = "linux/amd64", .target = .{ .cpu_arch = .x86_64, .os_tag = .linux } }, .{ .platform = "linux/arm64", .target = .{ .cpu_arch = .aarch64, .os_tag = .linux } }, .{ .platform = "linux/riscv64", .target = .{ .cpu_arch = .riscv64, .os_tag = .linux } }, .{ .platform = "linux/ppc64le", .target = .{ .cpu_arch = .powerpc64le, .os_tag = .linux } }, .{ .platform = "linux/s390x", .target = .{ .cpu_arch = .s390x, .os_tag = .linux } }, .{ .platform = "linux/386", .target = .{ .cpu_arch = .x86, .os_tag = .linux } }, .{ .platform = "linux/arm/v7", .target = .{ .cpu_arch = .arm, .os_tag = .linux, .abi = .musleabihf } }, // linux/arm/v7 .{ .platform = "linux/arm/v6", .target = .{ .cpu_arch = .arm, .os_tag = .linux, .abi = .musleabihf, .cpu_model = .{ .explicit = &std.Target.arm.cpu.arm1176jzf_s }, } }, }; const SubPath = struct { path: [3][]const u8, len: usize, }; // We are going to put all the binaries in paths that will be happy with // the dockerfile at the end, which means we need to get all the platforms // into slices. We can do this at comptime, but need to use arrays, so we // will hard code 3 element arrays which will hold our linux/arm/v7. If // deeper platforms are invented by docker later, we'll need to tweak the // hardcoded "3" values above and below, but at least we'll throw a compile // error to let the maintainer of the code know they screwed up by adding // a hardcoded platform above without changing the hardcoded length values. // By having the components chopped up this way, we should be able to build // all this from a Windows host comptime var dest_sub_paths: [docker_targets.len]SubPath = undefined; comptime { for (docker_targets, 0..) |dt, inx| { var si = std.mem.splitScalar(u8, dt.platform, '/'); var sub_path: SubPath = undefined; sub_path.len = 1 + std.mem.count(u8, dt.platform, "/"); if (sub_path.len > 3) @compileError("Docker platform cannot have more than 2 forward slashes"); var jnx: usize = 0; while (si.next()) |s| : (jnx += 1) sub_path.path[jnx] = s; dest_sub_paths[inx] = sub_path; } } const docker_step = b.step("docker", "Prepares the app for bundling as multi-platform docker image"); for (docker_targets, 0..) |dt, i| { const target_module = b.createModule(.{ .root_source_file = compile.root_module.root_source_file, .target = b.resolveTargetQuery(dt.target), .optimize = .ReleaseSafe, }); for (compile.root_module.import_table.keys()) |k| target_module.addImport(k, compile.root_module.import_table.get(k).?); const target_exe = b.addExecutable(.{ .name = compile.name, .root_module = target_module, }); // We can't use our dest_sub_paths directly here, because adding // a value for "dest_sub_path" in the installArtifact options will also // override the use of the basename. So wee need to construct our own // slice. We know the number of path components though, so we will // alloc what we need (no free, since zig build uses an arena) and // copy our components in place var final_sub_path = try b.allocator.alloc([]const u8, dest_sub_paths[i].len + 1); for (dest_sub_paths[i].path, 0..) |p, j| final_sub_path[j] = p; final_sub_path[final_sub_path.len - 1] = target_exe.name; // add basename at end docker_step.dependOn(&b.addInstallArtifact(target_exe, .{ .dest_sub_path = try std.fs.path.join(b.allocator, final_sub_path), }).step); } // The above will get us all the binaries, but we also need a dockerfile try dockerInstallDockerfile(b, docker_step, compile.name); } fn dockerInstallDockerfile(b: *std.Build, docker_step: *std.Build.Step, exe_name: []const u8) !void { const dockerfile_fmt = \\FROM alpine:latest AS build \\RUN apk --update add ca-certificates \\ \\FROM scratch \\ARG TARGETPLATFORM \\ENV PATH=/bin \\COPY --from=build /etc/ssl/certs/ca-certificates.crt /etc/ssl/certs/ca-certificates.crt \\COPY bin/$TARGETPLATFORM/{s} /bin ; const dockerfile_data = try std.fmt.allocPrint(b.allocator, dockerfile_fmt, .{exe_name}); const writefiles = b.addWriteFiles(); const dockerfile = writefiles.add("Dockerfile", dockerfile_data); docker_step.dependOn(&b.addInstallFile(dockerfile, "Dockerfile").step); }