const std = @import("std"); const builtin = @import("builtin"); pub const HandlerFn = *const fn (std.mem.Allocator, []const u8) anyerror![]const u8; const log = std.log.scoped(.lambda); var client: ?std.http.Client = null; const prefix = "http://"; const postfix = "/2018-06-01/runtime/invocation"; pub fn deinit() void { if (client) |*c| c.deinit(); client = null; } /// Starts the lambda framework. Handler will be called when an event is processing /// If an allocator is not provided, an approrpriate allocator will be selected and used /// This function is intended to loop infinitely. If not used in this manner, /// make sure to call the deinit() function pub fn run(allocator: ?std.mem.Allocator, event_handler: HandlerFn) !void { // TODO: remove inferred error set? const lambda_runtime_uri = std.posix.getenv("AWS_LAMBDA_RUNTIME_API") orelse test_lambda_runtime_uri.?; // TODO: If this is null, go into single use command line mode var gpa = std.heap.GeneralPurposeAllocator(.{}){}; defer _ = gpa.deinit(); const alloc = allocator orelse gpa.allocator(); const url = try std.fmt.allocPrint(alloc, "{s}{s}{s}/next", .{ prefix, lambda_runtime_uri, postfix }); defer alloc.free(url); const uri = try std.Uri.parse(url); // TODO: Simply adding this line without even using the client is enough // to cause seg faults!? // client = client orelse .{ .allocator = alloc }; // so we'll do this instead if (client != null) return error.MustDeInitBeforeCallingRunAgain; client = .{ .allocator = alloc }; log.info("tid {d} (lambda): Bootstrap initializing with event url: {s}", .{ std.Thread.getCurrentId(), url }); while (lambda_remaining_requests == null or lambda_remaining_requests.? > 0) { if (lambda_remaining_requests) |*r| { // we're under test log.debug("lambda remaining requests: {d}", .{r.*}); r.* -= 1; } var req_alloc = std.heap.ArenaAllocator.init(alloc); defer req_alloc.deinit(); const req_allocator = req_alloc.allocator(); // Fundamentally we're doing 3 things: // 1. Get the next event from Lambda (event data and request id) // 2. Call our handler to get the response // 3. Post the response back to Lambda var ev = getEvent(req_allocator, uri) catch |err| { // Well, at this point all we can do is shout at the void log.err("Error fetching event details: {}", .{err}); std.posix.exit(1); // continue; }; if (ev == null) continue; // this gets logged in getEvent, and without // a request id, we still can't do anything // reasonable to report back const event = ev.?; defer ev.?.deinit(); const event_response = event_handler(req_allocator, event.event_data) catch |err| { event.reportError(@errorReturnTrace(), err, lambda_runtime_uri) catch unreachable; continue; }; event.postResponse(lambda_runtime_uri, event_response) catch |err| { event.reportError(@errorReturnTrace(), err, lambda_runtime_uri) catch unreachable; continue; }; } } const Event = struct { allocator: std.mem.Allocator, event_data: []const u8, request_id: []const u8, const Self = @This(); pub fn init(allocator: std.mem.Allocator, event_data: []const u8, request_id: []const u8) Self { return .{ .allocator = allocator, .event_data = event_data, .request_id = request_id, }; } pub fn deinit(self: *Self) void { self.allocator.free(self.event_data); self.allocator.free(self.request_id); } fn reportError( self: Self, return_trace: ?*std.builtin.StackTrace, err: anytype, lambda_runtime_uri: []const u8, ) !void { // If we fail in this function, we're pretty hosed up if (return_trace) |rt| log.err("Caught error: {}. Return Trace: {any}", .{ err, rt }) else log.err("Caught error: {}. No return trace available", .{err}); const err_url = try std.fmt.allocPrint( self.allocator, "{s}{s}{s}/{s}/error", .{ prefix, lambda_runtime_uri, postfix, self.request_id }, ); defer self.allocator.free(err_url); const err_uri = try std.Uri.parse(err_url); const content = \\{{ \\ "errorMessage": "{s}", \\ "errorType": "HandlerReturnedError", \\ "stackTrace": [ "{any}" ] \\}} ; const content_fmt = if (return_trace) |rt| try std.fmt.allocPrint(self.allocator, content, .{ @errorName(err), rt }) else try std.fmt.allocPrint(self.allocator, content, .{ @errorName(err), "no return trace available" }); defer self.allocator.free(content_fmt); log.err("Posting to {s}: Data {s}", .{ err_url, content_fmt }); // TODO: There is something up with using a shared client in this way // so we're taking a perf hit in favor of stability. In a practical // sense, without making HTTPS connections (lambda environment is // non-ssl), this shouldn't be a big issue var cl = std.http.Client{ .allocator = self.allocator }; defer cl.deinit(); var req = cl.request(.POST, err_uri, .{ .extra_headers = &.{ .{ .name = "Lambda-Runtime-Function-Error-Type", .value = "HandlerReturned", }, }, }) catch |req_err| { log.err("Error creating request for request id {s}: {}", .{ self.request_id, req_err }); std.posix.exit(1); }; defer req.deinit(); req.transfer_encoding = .{ .content_length = content_fmt.len }; var body_writer = req.sendBodyUnflushed(&.{}) catch |send_err| { log.err("Error sending body for request id {s}: {}", .{ self.request_id, send_err }); std.posix.exit(1); }; body_writer.writer.writeAll(content_fmt) catch |write_err| { log.err("Error writing body for request id {s}: {}", .{ self.request_id, write_err }); std.posix.exit(1); }; body_writer.end() catch |end_err| { log.err("Error ending body for request id {s}: {}", .{ self.request_id, end_err }); std.posix.exit(1); }; req.connection.?.flush() catch |flush_err| { log.err("Error flushing for request id {s}: {}", .{ self.request_id, flush_err }); std.posix.exit(1); }; var redirect_buffer: [1024]u8 = undefined; const response = req.receiveHead(&redirect_buffer) catch |recv_err| { log.err("Error receiving response for request id {s}: {}", .{ self.request_id, recv_err }); std.posix.exit(1); }; if (response.head.status != .ok) { // Documentation says something about "exit immediately". The // Lambda infrastrucutre restarts, so it's unclear if that's necessary. // It seems as though a continue should be fine, and slightly faster log.err("Post fail: {} {s}", .{ @intFromEnum(response.head.status), response.head.reason, }); std.posix.exit(1); } log.err("Error reporting post complete", .{}); } fn postResponse(self: Self, lambda_runtime_uri: []const u8, event_response: []const u8) !void { const response_url = try std.fmt.allocPrint( self.allocator, "{s}{s}{s}/{s}/response", .{ prefix, lambda_runtime_uri, postfix, self.request_id }, ); defer self.allocator.free(response_url); const response_uri = try std.Uri.parse(response_url); var cl = std.http.Client{ .allocator = self.allocator }; defer cl.deinit(); // Lambda does different things, depending on the runtime. Go 1.x takes // any return value but escapes double quotes. Custom runtimes can // do whatever they want. node I believe wraps as a json object. We're // going to leave the return value up to the handler, and they can // use a seperate API for normalization so we're explicit. As a result, // we can just post event_response completely raw here var req = try cl.request(.POST, response_uri, .{}); defer req.deinit(); req.transfer_encoding = .{ .content_length = event_response.len }; var body_writer = try req.sendBodyUnflushed(&.{}); try body_writer.writer.writeAll(event_response); try body_writer.end(); try req.connection.?.flush(); var redirect_buffer: [1024]u8 = undefined; const response = try req.receiveHead(&redirect_buffer); if (response.head.status != .ok) return error.UnexpectedStatusFromPostResponse; } }; fn getEvent(allocator: std.mem.Allocator, event_data_uri: std.Uri) !?Event { // TODO: There is something up with using a shared client in this way // so we're taking a perf hit in favor of stability. In a practical // sense, without making HTTPS connections (lambda environment is // non-ssl), this shouldn't be a big issue var cl = std.http.Client{ .allocator = allocator }; defer cl.deinit(); // Lambda freezes the process at this line of code. During warm start, // the process will unfreeze and data will be sent in response to client.get var req = try cl.request(.GET, event_data_uri, .{}); defer req.deinit(); try req.sendBodiless(); var redirect_buffer: [0]u8 = undefined; var response = try req.receiveHead(&redirect_buffer); if (response.head.status != .ok) { // Documentation says something about "exit immediately". The // Lambda infrastrucutre restarts, so it's unclear if that's necessary. // It seems as though a continue should be fine, and slightly faster // std.os.exit(1); log.err("Lambda server event response returned bad error code: {} {s}", .{ @intFromEnum(response.head.status), response.head.reason, }); return error.EventResponseNotOkResponse; } // Extract request ID from response headers var request_id: ?[]const u8 = null; var header_it = response.head.iterateHeaders(); while (header_it.next()) |h| { if (std.ascii.eqlIgnoreCase(h.name, "Lambda-Runtime-Aws-Request-Id")) request_id = h.value; // TODO: XRay uses an environment variable to do its magic. It's our // responsibility to set this, but no zig-native setenv(3)/putenv(3) // exists. I would kind of rather not link in libc for this, // so we'll hold for now and think on this // if (std.mem.indexOf(u8, h.name.value, "Lambda-Runtime-Trace-Id")) |_| // std.process. // std.os.setenv("AWS_LAMBDA_RUNTIME_API"); } if (request_id == null) { // We can't report back an issue because the runtime error reporting endpoint // uses request id in its path. So the best we can do is log the error and move // on here. log.err("Could not find request id: skipping request", .{}); return null; } const req_id = request_id.?; log.debug("got lambda request with id {s}", .{req_id}); // Read response body using a transfer buffer var transfer_buffer: [64 * 1024]u8 = undefined; const body_reader = response.reader(&transfer_buffer); // Read all data into an allocated buffer // We use content_length if available, otherwise read chunks const content_len = response.head.content_length orelse (10 * 1024 * 1024); // 10MB max if not specified var event_data = try allocator.alloc(u8, content_len); errdefer allocator.free(event_data); var total_read: usize = 0; while (total_read < content_len) { const remaining = event_data[total_read..]; const bytes_read = body_reader.readSliceShort(remaining) catch |err| switch (err) { error.ReadFailed => return error.ReadFailed, }; if (bytes_read == 0) break; total_read += bytes_read; } event_data = try allocator.realloc(event_data, total_read); return Event.init( allocator, event_data, try allocator.dupe(u8, req_id), ); } //////////////////////////////////////////////////////////////////////// // All code below this line is for testing //////////////////////////////////////////////////////////////////////// var server_port: ?u16 = null; var server_remaining_requests: usize = 0; var lambda_remaining_requests: ?usize = null; var server_response: []const u8 = "unset"; var server_request_aka_lambda_response: []u8 = ""; var test_lambda_runtime_uri: ?[]u8 = null; var server_ready = false; /// This starts a test server. We're not testing the server itself, /// so the main tests will start this thing up and create an arena around the /// whole thing so we can just deallocate everything at once at the end, /// leaks be damned fn startServer(allocator: std.mem.Allocator) !std.Thread { return try std.Thread.spawn( .{}, threadMain, .{allocator}, ); } fn threadMain(allocator: std.mem.Allocator) !void { const address = try std.net.Address.parseIp("127.0.0.1", 0); var http_server = try address.listen(.{ .reuse_address = true }); server_port = http_server.listen_address.in.getPort(); test_lambda_runtime_uri = try std.fmt.allocPrint(allocator, "127.0.0.1:{d}", .{server_port.?}); log.debug("server listening at {s}", .{test_lambda_runtime_uri.?}); defer test_lambda_runtime_uri = null; defer server_port = null; log.info("starting server thread, tid {d}", .{std.Thread.getCurrentId()}); var arena = std.heap.ArenaAllocator.init(allocator); defer arena.deinit(); const aa = arena.allocator(); // We're in control of all requests/responses, so this flag will tell us // when it's time to shut down while (server_remaining_requests > 0) { server_remaining_requests -= 1; processRequest(aa, &http_server) catch |e| { log.err("Unexpected error processing request: {any}", .{e}); if (@errorReturnTrace()) |trace| { std.debug.dumpStackTrace(trace.*); } }; } } fn processRequest(allocator: std.mem.Allocator, server: *std.net.Server) !void { server_ready = true; errdefer server_ready = false; log.debug( "tid {d} (server): server waiting to accept. requests remaining: {d}", .{ std.Thread.getCurrentId(), server_remaining_requests + 1 }, ); var connection = try server.accept(); defer connection.stream.close(); server_ready = false; var read_buffer: [1024 * 16]u8 = undefined; var write_buffer: [1024 * 16]u8 = undefined; var stream_reader = std.net.Stream.Reader.init(connection.stream, &read_buffer); var stream_writer = std.net.Stream.Writer.init(connection.stream, &write_buffer); var http_server = std.http.Server.init(stream_reader.interface(), &stream_writer.interface); const request = http_server.receiveHead() catch |err| switch (err) { error.HttpConnectionClosing => return, else => { std.log.err("closing http connection: {s}", .{@errorName(err)}); return; }, }; // Read request body if present if (request.head.content_length) |content_len| { if (content_len > 0) { var body_transfer_buffer: [64 * 1024]u8 = undefined; const body_reader = http_server.reader.bodyReader(&body_transfer_buffer, request.head.transfer_encoding, request.head.content_length); var body_data = try allocator.alloc(u8, content_len); errdefer allocator.free(body_data); var total_read: usize = 0; while (total_read < content_len) { const remaining = body_data[total_read..]; const bytes_read = body_reader.readSliceShort(remaining) catch break; if (bytes_read == 0) break; total_read += bytes_read; } server_request_aka_lambda_response = try allocator.realloc(body_data, total_read); } } // Build and send response const response_bytes = serve(); var respond_request = request; try respond_request.respond(response_bytes, .{ .extra_headers = &.{ .{ .name = "Lambda-Runtime-Aws-Request-Id", .value = "69" }, }, }); log.debug( "tid {d} (server): sent response: {s}", .{ std.Thread.getCurrentId(), response_bytes }, ); } fn serve() []const u8 { return server_response; } fn handler(allocator: std.mem.Allocator, event_data: []const u8) ![]const u8 { _ = allocator; return event_data; } pub fn test_lambda_request(allocator: std.mem.Allocator, request: []const u8, request_count: usize, handler_fn: HandlerFn) ![]u8 { var arena = std.heap.ArenaAllocator.init(allocator); defer arena.deinit(); const aa = arena.allocator(); // Setup our server to run, and set the response for the server to the // request. There is a cognitive disconnect here between mental model and // physical model. // // Mental model: // // Lambda request -> λ -> Lambda response // // Physcial Model: // // 1. λ requests instructions from server // 2. server provides "Lambda request" // 3. λ posts response back to server // // So here we are setting up our server, then our lambda request loop, // but it all needs to be in seperate threads so we can control startup // and shut down. Both server and Lambda are set up to watch global variable // booleans to know when to shut down. This function is designed for a // single request/response pair only lambda_remaining_requests = request_count; server_remaining_requests = lambda_remaining_requests.? * 2; // Lambda functions // fetch from the server, // then post back. Always // 2, no more, no less server_response = request; // set our instructions to lambda, which in our // physical model above, is the server response defer server_response = "unset"; // set it back so we don't get confused later // when subsequent tests fail const server_thread = try startServer(aa); // start the server, get it ready while (!server_ready) std.Thread.sleep(100); log.debug("tid {d} (main): server reports ready", .{std.Thread.getCurrentId()}); // we aren't testing the server, // so we'll use the arena allocator defer server_thread.join(); // we'll be shutting everything down before we exit // Now we need to start the lambda framework try run(allocator, handler_fn); // We want our function under test to report leaks return try allocator.dupe(u8, server_request_aka_lambda_response); } test "basic request" { // std.testing.log_level = .debug; const allocator = std.testing.allocator; const request = \\{"foo": "bar", "baz": "qux"} ; // This is what's actually coming back. Is this right? const expected_response = \\{"foo": "bar", "baz": "qux"} ; const lambda_response = try test_lambda_request(allocator, request, 1, handler); defer deinit(); defer allocator.free(lambda_response); try std.testing.expectEqualStrings(expected_response, lambda_response); } test "several requests do not fail" { // std.testing.log_level = .debug; const allocator = std.testing.allocator; const request = \\{"foo": "bar", "baz": "qux"} ; // This is what's actually coming back. Is this right? const expected_response = \\{"foo": "bar", "baz": "qux"} ; const lambda_response = try test_lambda_request(allocator, request, 5, handler); defer deinit(); defer allocator.free(lambda_response); try std.testing.expectEqualStrings(expected_response, lambda_response); }