const std = @import("std"); const universal_lambda = @import("universal_lambda_build"); // This seems to fail for some reason. zig-sqlite does a lot of messing with // the target. So instead, we will handle this in the CI/CD system at the // command line const test_targets = [_]std.zig.CrossTarget{ .{}, // native // .{ // .cpu_arch = .x86_64, // .os_tag = .linux, // }, // .{ // .cpu_arch = .aarch64, // .os_tag = .linux, // }, // .{ // .cpu_arch = .riscv64, // .os_tag = .linux, // }, // will not work // .{ // .cpu_arch = .arm, // .os_tag = .linux, // }, // .{ // .cpu_arch = .x86_64, // .os_tag = .windows, // }, // .{ // .cpu_arch = .aarch64, // .os_tag = .macos, // }, // .{ // .cpu_arch = .x86_64, // .os_tag = .macos, // }, // Since we are using sqlite, we cannot use wasm32/wasi at this time. Even // with compile errors above, I do not believe wasi will be easily supported // .{ // .cpu_arch = .wasm32, // .os_tag = .wasi, // }, }; // Although this function looks imperative, note that its job is to // declaratively construct a build graph that will be executed by an external // runner. pub fn build(b: *std.Build) !void { // Standard target options allows the person running `zig build` to choose // what target to build for. Here we do not override the defaults, which // means any target is allowed, and the default is native. Other options // for restricting supported target set are available. const target = b.standardTargetOptions(.{}); // Standard optimization options allow the person running `zig build` to select // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // set a preferred release mode, allowing the user to decide how to optimize. const optimize = b.standardOptimizeOption(.{}); const exe = b.addExecutable(.{ .name = "ddblocal", // In this case the main source file is merely a path, however, in more // complicated build scripts, this could be a generated file. .root_source_file = .{ .path = "src/main.zig" }, .target = target, .optimize = optimize, }); // This declares intent for the executable to be installed into the // standard location when the user invokes the "install" step (the default // step when running `zig build`). b.installArtifact(exe); // This *creates* a Run step in the build graph, to be executed when another // step is evaluated that depends on it. The next line below will establish // such a dependency. const run_cmd = b.addRunArtifact(exe); // By making the run step depend on the install step, it will be run from the // installation directory rather than directly from within the cache directory. // This is not necessary, however, if the application depends on other installed // files, this ensures they will be present and in the expected location. run_cmd.step.dependOn(b.getInstallStep()); // This allows the user to pass arguments to the application in the build // command itself, like this: `zig build run -- arg1 arg2 etc` if (b.args) |args| { run_cmd.addArgs(args); } // This creates a build step. It will be visible in the `zig build --help` menu, // and can be selected like this: `zig build run` // This will evaluate the `run` step rather than the default, which is "install". const run_step = b.step("run", "Run the app"); run_step.dependOn(&run_cmd.step); try universal_lambda.configureBuild(b, exe); const exe_aws_dep = b.dependency("aws", .{ .target = target, .optimize = optimize, }); const exe_aws_signing_module = exe_aws_dep.module("aws-signing"); const exe_sqlite_dep = b.dependency("sqlite", .{ .target = target, .optimize = optimize, .use_bundled = true, }); const exe_sqlite_module = exe_sqlite_dep.module("sqlite"); exe.addModule("aws-signing", exe_aws_signing_module); exe.addModule("sqlite", exe_sqlite_module); exe.addIncludePath(.{ .path = "c" }); exe.linkLibrary(exe_sqlite_dep.artifact("sqlite")); // Similar to creating the run step earlier, this exposes a `test` step to // the `zig build --help` menu, providing a way for the user to request // running the unit tests. const test_step = b.step("test", "Run unit tests"); for (test_targets) |t| { const aws_dep = b.dependency("aws", .{ .target = t, .optimize = optimize, }); const aws_signing_module = aws_dep.module("aws-signing"); const sqlite_dep = b.dependency("sqlite", .{ .target = t, .optimize = optimize, .use_bundled = true, }); const sqlite_module = sqlite_dep.module("sqlite"); // Creates a step for unit testing. This only builds the test executable // but does not run it. const unit_tests = b.addTest(.{ .root_source_file = .{ .path = "src/main.zig" }, .target = t, .optimize = optimize, }); _ = try universal_lambda.addModules(b, unit_tests); const run_unit_tests = b.addRunArtifact(unit_tests); // run_unit_tests.skip_foreign_checks = true; test_step.dependOn(&run_unit_tests.step); unit_tests.addModule("aws-signing", aws_signing_module); unit_tests.addModule("sqlite", sqlite_module); unit_tests.addIncludePath(.{ .path = "c" }); unit_tests.linkLibrary(sqlite_dep.artifact("sqlite")); } var creds_step = b.step("generate_credentials", "Generate credentials for access_keys.csv"); creds_step.makeFn = generateCredentials; } fn generateCredentials(s: *std.build.Step, prog_node: *std.Progress.Node) error{ MakeFailed, MakeSkipped }!void { _ = s; // Account id: // Documentation describes account id as a 12 digit number: // https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html // This can be a random number, but must be in a 12 digit range. // // The access key is 32 bit encoded, which leaves us with // 8 * 5 = 40 bits of information to work with. The maximum value of // a u40 in decimal is 1099511627775, a 13 digit number. So our maximum // decimal is below, and fits into u40. // // Min: 0x0000000000 (0d000000000000) // Max: 0xe8d4a50fff (0d999999999999) // // Access key: // This page shows how the access key is put together: // https://medium.com/@TalBeerySec/a-short-note-on-aws-key-id-f88cc4317489 // tl;dr // * First 4 characters: designates type of key: We will use "ELAK" for access key // * Next 8 characters: Account ID, base32 encoded, shifted by one bit // * Next 8 characters: Unknown. Assume random base32, which would give us 8 * 5 = u40; // // // // Secret Access Key: // In the wild, these are 40 characters and appear to be base64 encoded. // Base64 encoding of 30 bytes is always exactly 40 characters and have // no padding, which is exactly what we observe _ = prog_node; const encryption = @import("src/encryption.zig"); var key: [encryption.encoded_key_length]u8 = undefined; encryption.randomEncodedKey(&key); const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp())))); var prng = std.rand.DefaultPrng.init(seed); var rand = prng.random(); const account_number = rand.intRangeAtMost(u40, 0, 999999999999); // 100000000000, 999999999999); const access_key_random_suffix = rand.int(u39); const access_key_suffix: u80 = (@as(u80, account_number) << 39) + @as(u80, access_key_random_suffix); const access_key_suffix_encoded = base32Encode(u80, access_key_suffix); // std.debug.assert(access_key_suffix_encoded.len == 16); var secret_key: [30]u8 = undefined; rand.bytes(&secret_key); // The rest don't need to be cryptographically secure...does this? var encoded_secret: [40]u8 = undefined; _ = std.base64.standard.Encoder.encode(&encoded_secret, secret_key[0..]); const stdout_raw = std.io.getStdOut().writer(); var stdout_writer = std.io.bufferedWriter(stdout_raw); const stdout = stdout_writer.writer(); // stdout.print( // \\# account_number: {b:0>80} // \\# random_suffix : {b:0>80} // \\# access_key_suffix: {b:0>80} // \\ // , // .{ // @as(u80, account_number) << 39, // @as(u80, access_key_random_suffix), // access_key_suffix, // }, // ) catch return error.MakeFailed; stdout.print( "# access_key: ELAK{s}, secret_key: {s}, account_number: {d}, db_encryption_key: {s}", .{ access_key_suffix_encoded, encoded_secret, account_number, key, }, ) catch return error.MakeFailed; stdout.print( "\n#\n# You can copy/paste the following line into access_keys.csv:\nELAK{s},{s},{d},{s}\n", .{ access_key_suffix_encoded, encoded_secret, account_number, key, }, ) catch return error.MakeFailed; stdout_writer.flush() catch return error.MakeFailed; } /// encodes an unsigned integer into base36 pub fn base36encode(comptime T: type, allocator: std.mem.Allocator, data: T) ![]const u8 { const alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; std.debug.assert(alphabet.len == 36); const ti = @typeInfo(T); if (ti != .Int or ti.Int.signedness != .unsigned) @compileError("encode only works with unsigned integers"); const bits = ti.Int.bits; // We cannot have more than 6 bits (2^6 = 64) represented per byte in our final output var al = try std.ArrayList(u8).initCapacity(allocator, bits / 6); defer al.deinit(); var remaining = data; while (remaining > 0) : (remaining /= @as(T, @intCast(alphabet.len))) { al.appendAssumeCapacity(alphabet[@as(usize, @intCast(remaining % alphabet.len))]); } // This is not exact, but 6 bits var rc = try al.toOwnedSlice(); std.mem.reverse(u8, rc); return rc; } /// Because Base32 is a power of 2, we can directly return an array and avoid /// allocations entirely /// To trim leading 0s, simply std.mem.trimLeft(u8, encoded_data, "A"); pub fn base32Encode(comptime T: type, data: T) [@typeInfo(T).Int.bits / 5]u8 { const alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"; std.debug.assert(alphabet.len == 32); const ti = @typeInfo(T); if (ti != .Int or ti.Int.signedness != .unsigned) @compileError("encode only works with unsigned integers"); const bits = ti.Int.bits; // We will have exactly 5 bits (2^5 = 32) represented per byte in our final output var rc: [bits / 5]u8 = undefined; var inx: usize = 0; const Shift_type = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = @ceil(@log2(@as(f128, @floatFromInt(bits)))), } }); // TODO: I think we need a table here to determine the size below while (inx < rc.len) : (inx += 1) { const char_bits: u5 = @as(u5, @truncate(data >> (@as(Shift_type, @intCast(inx * 5))))); rc[rc.len - @as(usize, @intCast(inx)) - 1] = alphabet[@as(usize, @intCast(char_bits))]; // 5 bits from inx } return rc; }