const std = @import("std"); const universal_lambda = @import("universal_lambda_build"); // Although this function looks imperative, note that its job is to // declaratively construct a build graph that will be executed by an external // runner. pub fn build(b: *std.Build) !void { // Standard target options allows the person running `zig build` to choose // what target to build for. Here we do not override the defaults, which // means any target is allowed, and the default is native. Other options // for restricting supported target set are available. const target = b.standardTargetOptions(.{}); // Standard optimization options allow the person running `zig build` to select // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // set a preferred release mode, allowing the user to decide how to optimize. const optimize = b.standardOptimizeOption(.{}); const exe = b.addExecutable(.{ .name = "ddblocal", // In this case the main source file is merely a path, however, in more // complicated build scripts, this could be a generated file. .root_source_file = .{ .path = "src/main.zig" }, .target = target, .optimize = optimize, }); // This declares intent for the executable to be installed into the // standard location when the user invokes the "install" step (the default // step when running `zig build`). b.installArtifact(exe); // This *creates* a Run step in the build graph, to be executed when another // step is evaluated that depends on it. The next line below will establish // such a dependency. const run_cmd = b.addRunArtifact(exe); // By making the run step depend on the install step, it will be run from the // installation directory rather than directly from within the cache directory. // This is not necessary, however, if the application depends on other installed // files, this ensures they will be present and in the expected location. run_cmd.step.dependOn(b.getInstallStep()); // This allows the user to pass arguments to the application in the build // command itself, like this: `zig build run -- arg1 arg2 etc` if (b.args) |args| { run_cmd.addArgs(args); } // This creates a build step. It will be visible in the `zig build --help` menu, // and can be selected like this: `zig build run` // This will evaluate the `run` step rather than the default, which is "install". const run_step = b.step("run", "Run the app"); run_step.dependOn(&run_cmd.step); // Creates a step for unit testing. This only builds the test executable // but does not run it. const unit_tests = b.addTest(.{ .root_source_file = .{ .path = "src/main.zig" }, .target = target, .optimize = optimize, }); _ = try universal_lambda.addModules(b, unit_tests); const run_unit_tests = b.addRunArtifact(unit_tests); // Similar to creating the run step earlier, this exposes a `test` step to // the `zig build --help` menu, providing a way for the user to request // running the unit tests. const test_step = b.step("test", "Run unit tests"); test_step.dependOn(&run_unit_tests.step); try universal_lambda.configureBuild(b, exe); const aws_dep = b.dependency("aws", .{ .target = target, .optimize = optimize, }); const aws_signing_module = aws_dep.module("aws-signing"); const sqlite_dep = b.dependency("sqlite", .{ .target = target, .optimize = optimize, .use_bundled = true, }); const sqlite_module = sqlite_dep.module("sqlite"); for (&[_]*std.Build.Step.Compile{ exe, unit_tests }) |cs| { cs.addModule("aws-signing", aws_signing_module); cs.addModule("sqlite", sqlite_module); cs.addIncludePath(.{ .path = "c" }); cs.linkLibrary(sqlite_dep.artifact("sqlite")); } var creds_step = b.step("generate_credentials", "Generate credentials for access_keys.csv"); creds_step.makeFn = generateCredentials; } fn generateCredentials(s: *std.build.Step, prog_node: *std.Progress.Node) error{ MakeFailed, MakeSkipped }!void { // Format: // Access Key,Account Id,Existing encoded encryption key, New encoded encryption _ = prog_node; const encryption = @import("src/encryption.zig"); var key: [encryption.encoded_key_length]u8 = undefined; encryption.randomEncodedKey(&key); const seed = @as(u64, @truncate(@as(u128, @bitCast(std.time.nanoTimestamp())))); var prng = std.rand.DefaultPrng.init(seed); var rand = prng.random(); const account_number = rand.intRangeAtMost(u64, 100000000000, 999999999999); const access_key_suffix: u128 = blk: { // workaround for u64 max on rand.intRangeAtMost const min = 0xECFF3BCC40CA2000000000; // const max = 0x2153E468B91C6E0000000000; // const diff = max - min; // 0x2066e52cecdba40000000000 (is 12 bytes/96 bits) // So we can use a full 64 bit range and just add to the min break :blk @as(u128, rand.int(u64)) + min; }; const access_key_suffix_encoded = encode( u128, s.owner.allocator, access_key_suffix, ) catch return error.MakeFailed; var secret_key: [30]u8 = undefined; rand.bytes(&secret_key); // The rest don't need to be cryptographically secure...does this? var encoded_secret: [40]u8 = undefined; _ = std.base64.standard.Encoder.encode(&encoded_secret, secret_key[0..]); std.debug.print( "access_key: EL{s}, secret_key: {s}, account_number: {d}, db_encryption_key: {s}", .{ access_key_suffix_encoded, encoded_secret, account_number, key, }, ); // Documentation describes account id as a 12 digit number: // https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html // Random u64 // Max: 0x3b9ac9ff (0d999999999) // Min: 0x05f5e100 (0d100000000) // // Access key and secret key are probably more loose. Here is one: // // "AccessKey": { // "AccessKeyId": "AKIAYAM4POHXNMQUDBNG", // "SecretAccessKey": "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", // } // Access key appears 20 characters A-Z, 0-9. Starts with AK or AS, so // 18 characters of random, and it looks like base36 // https://ziglang.org/documentation/0.11.0/std/src/std/base64.zig.html // https://en.wikipedia.org/wiki/Base36 // For 18 characters, the lower end would be: // NN100000000000000000 (hex: ECFF3BCC40CA2000000000) // Upper: // NNZZZZZZZZZZZZZZZZZZ (hex: 2153E468B91C6E0000000000) // Which can be stored in u24 // Secret key here is 40 characters and roughly looks like base64 encoded // random binary data, which it probably is. 40 characters of base64 is 32 bytes of data } /// encodes an unsigned integer into base36 pub fn encode(comptime T: type, allocator: std.mem.Allocator, data: T) ![]const u8 { const alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const ti = @typeInfo(T); if (ti != .Int or ti.Int.signedness != .unsigned) @compileError("encode only works with unsigned integers"); const bits = ti.Int.bits; // We cannot have more than 6 bits (2^6 = 64) represented per byte in our final output var al = try std.ArrayList(u8).initCapacity(allocator, bits / 6); defer al.deinit(); var remaining = data; while (remaining > 0) : (remaining /= 36) { al.appendAssumeCapacity(alphabet[@as(usize, @intCast(remaining % 36))]); } // This is not exact, but 6 bits var rc = try al.toOwnedSlice(); std.mem.reverse(u8, rc); return rc; }