const builtin = @import("builtin"); const std = @import("std"); const case = @import("case"); const date = @import("date"); const json = @import("json"); const zeit = @import("zeit"); const awshttp = @import("aws_http.zig"); const url = @import("url.zig"); const servicemodel = @import("servicemodel.zig"); const xml_shaper = @import("xml_shaper.zig"); const xml_serializer = @import("xml_serializer.zig"); const scoped_log = std.log.scoped(.aws); /// control all logs directly/indirectly used by aws sdk. Not recommended for /// use under normal circumstances, but helpful for times when the zig logging /// controls are insufficient (e.g. use in build script) pub fn globalLogControl(aws_level: std.log.Level, http_level: std.log.Level, signing_level: std.log.Level, off: bool) void { const signing = @import("aws_signing.zig"); const credentials = @import("aws_credentials.zig"); logs_off = off; signing.logs_off = off; credentials.logs_off = off; awshttp.logs_off = off; log_level = aws_level; awshttp.log_level = http_level; signing.log_level = signing_level; credentials.log_level = signing_level; } /// Specifies logging level. This should not be touched unless the normal /// zig logging capabilities are inaccessible (e.g. during a build) pub var log_level: std.log.Level = .debug; /// Turn off logging completely pub var logs_off: bool = false; const log = struct { /// Log an error message. This log level is intended to be used /// when something has gone wrong. This might be recoverable or might /// be followed by the program exiting. pub fn err( comptime format: []const u8, args: anytype, ) void { if (!logs_off and @intFromEnum(std.log.Level.err) <= @intFromEnum(log_level)) scoped_log.err(format, args); } /// Log a warning message. This log level is intended to be used if /// it is uncertain whether something has gone wrong or not, but the /// circumstances would be worth investigating. pub fn warn( comptime format: []const u8, args: anytype, ) void { if (!logs_off and @intFromEnum(std.log.Level.warn) <= @intFromEnum(log_level)) scoped_log.warn(format, args); } /// Log an info message. This log level is intended to be used for /// general messages about the state of the program. pub fn info( comptime format: []const u8, args: anytype, ) void { if (!logs_off and @intFromEnum(std.log.Level.info) <= @intFromEnum(log_level)) scoped_log.info(format, args); } /// Log a debug message. This log level is intended to be used for /// messages which are only useful for debugging. pub fn debug( comptime format: []const u8, args: anytype, ) void { if (!logs_off and @intFromEnum(std.log.Level.debug) <= @intFromEnum(log_level)) scoped_log.debug(format, args); } }; pub const Options = struct { region: []const u8 = "aws-global", dualstack: bool = false, success_http_code: i64 = 200, client: Client, /// Used for testing to provide consistent signing. If null, will use current time signing_time: ?i64 = null, diagnostics: ?*Diagnostics = null, }; pub const Diagnostics = struct { http_code: i64, response_body: []const u8, allocator: std.mem.Allocator, pub fn deinit(self: *Diagnostics) void { self.allocator.free(self.response_body); self.response_body = undefined; } }; /// Using this constant may blow up build times. Recommed using Services() /// function directly, e.g. const services = Services(.{.sts, .ec2, .s3, .ddb}){}; pub const services = servicemodel.services; /// Get a service model by importing specific services only. As an example: /// const services = Services(.{.sts, .ec2, .s3, .ddb}){}; /// /// This will give you a constant with service data for sts, ec2, s3 and ddb only pub const Services = servicemodel.Services; pub const ClientOptions = struct { proxy: ?std.http.Client.Proxy = null, }; pub const Client = struct { allocator: std.mem.Allocator, aws_http: awshttp.AwsHttp, const Self = @This(); pub fn init(allocator: std.mem.Allocator, options: ClientOptions) Self { return Self{ .allocator = allocator, .aws_http = awshttp.AwsHttp.init(allocator, options.proxy), }; } pub fn deinit(self: *Client) void { self.aws_http.deinit(); } /// Calls AWS. Use a comptime request and options. For a runtime interface, /// see Request pub fn call(_: Self, comptime request: anytype, options: Options) !FullResponse(@TypeOf(request).metaInfo().action) { const action = @TypeOf(request).metaInfo().action; return Request(action).call(request, options); } }; /// Establish an AWS request that can be later called with runtime-known /// parameters. If all parameters are known at comptime, the call function /// may be simpler to use. request parameter here refers to the action /// constant from the model, e.g. Request(services.lambda.list_functions) pub fn Request(comptime request_action: anytype) type { return struct { const ActionRequest = action.Request; const FullResponseType = FullResponse(action); const Self = @This(); const action = request_action; const meta_info = ActionRequest.metaInfo(); const service_meta = meta_info.service_metadata; pub fn call(request: ActionRequest, options: Options) !FullResponseType { // every codegenned request object includes a metaInfo function to get // pointers to service and action log.debug("call: prefix {s}, sigv4 {s}, version {?s}, action {s}", .{ Self.service_meta.endpoint_prefix, Self.service_meta.sigv4_name, Self.service_meta.version, action.action_name, }); log.debug("proto: {}", .{Self.service_meta.aws_protocol}); // It seems as though there are 3 major branches of the 6 protocols. // 1. query/ec2_query, which are identical until you get to complex // structures. EC2 query does not allow us to request json though, // so we need to handle xml returns from this. // 2. *json*: These three appear identical for input (possible difference // for empty body serialization), but differ in error handling. // We're not doing a lot of error handling here, though. // 3. rest_xml: This is a one-off for S3, never used since switch (Self.service_meta.aws_protocol) { .query, .ec2_query => return Self.callQuery(request, options), .json_1_0, .json_1_1 => return Self.callJson(request, options), .rest_json_1, .rest_xml => return Self.callRest(request, options), } } /// Rest Json is the most complex and so we handle this seperately /// Oddly, Xml is similar enough we can route rest_xml through here as well fn callRest(request: ActionRequest, options: Options) !FullResponseType { // TODO: Does it work to merge restXml into this? const Action = @TypeOf(action); var aws_request: awshttp.HttpRequest = .{ .method = Action.http_config.method, .content_type = "application/json", .path = Action.http_config.uri, .headers = try headersFor(options.client.allocator, request), }; defer freeHeadersFor(options.client.allocator, request, aws_request.headers); log.debug("Rest method: '{s}'", .{aws_request.method}); log.debug("Rest success code: '{d}'", .{Action.http_config.success_code}); log.debug("Rest raw uri: '{s}'", .{Action.http_config.uri}); var al = std.ArrayList([]const u8){}; defer al.deinit(options.client.allocator); aws_request.path = try buildPath( options.client.allocator, Action.http_config.uri, ActionRequest, request, !std.mem.eql(u8, Self.service_meta.sdk_id, "S3"), &al, ); defer options.client.allocator.free(aws_request.path); log.debug("Rest processed uri: '{s}'", .{aws_request.path}); // TODO: Make sure this doesn't get escaped here for S3 aws_request.query = try buildQuery(options.client.allocator, request); if (aws_request.query.len == 0) { if (std.mem.indexOf(u8, aws_request.path, "?")) |inx| { log.debug("Detected query in path. Adjusting", .{}); // Sometimes (looking at you, s3), the uri in the model // has a query string shoved into it. If that's the case, // we need to parse and straighten this all out const orig_path = aws_request.path; // save as we'll need to dealloc const orig_query = aws_request.query; // save as we'll need to dealloc // We need to chop the query off because apparently the other one whacks the // query string. TODO: RTFM on zig to figure out why aws_request.query = try options.client.allocator.dupe(u8, aws_request.path[inx..]); aws_request.path = try options.client.allocator.dupe(u8, aws_request.path[0..inx]); // log.debug("inx: {d}\n\tnew path: {s}\n\tnew query: {s}", .{ inx, aws_request.path, aws_request.query }); options.client.allocator.free(orig_path); options.client.allocator.free(orig_query); } } log.debug("Rest query: '{s}'", .{aws_request.query}); defer options.client.allocator.free(aws_request.query); // We don't know if we need a body...guessing here, this should cover most var buffer = std.Io.Writer.Allocating.init(options.client.allocator); defer buffer.deinit(); if (Self.service_meta.aws_protocol == .rest_json_1) { if (std.mem.eql(u8, "PUT", aws_request.method) or std.mem.eql(u8, "POST", aws_request.method)) try buffer.writer.print("{f}", .{std.json.fmt(request, .{ .whitespace = .indent_4 })}); } aws_request.body = buffer.written(); var rest_xml_body: ?[]const u8 = null; defer if (rest_xml_body) |b| options.client.allocator.free(b); if (Self.service_meta.aws_protocol == .rest_xml) { if (std.mem.eql(u8, "PUT", aws_request.method) or std.mem.eql(u8, "POST", aws_request.method)) { if (@hasDecl(ActionRequest, "http_payload")) { // We will assign the body to the value of the field denoted by // the http_payload declaration on the request type. // Hopefully these will always be ?[]const u8, otherwise // we should see a compile error on this line const payload = @field(request, ActionRequest.http_payload); const T = @TypeOf(payload); var body_assigned = false; if (T == ?[]const u8) { aws_request.body = payload.?; body_assigned = true; } if (T == []const u8) { aws_request.body = payload; body_assigned = true; } if (!body_assigned) { const sm = ActionRequest.metaInfo().service_metadata; if (!std.mem.eql(u8, sm.endpoint_prefix, "s3")) // Because the attributes below are most likely only // applicable to s3, we are better off to fail // early. This portion of the code base should // only be executed for s3 as no other known // service uses this protocol return error.NotImplemented; const attrs = try std.fmt.allocPrint( options.client.allocator, "xmlns=\"http://{s}.amazonaws.com/doc/{s}/\"", .{ sm.endpoint_prefix, sm.version.? }, ); // Version required for the protocol, we should panic if it is not present defer options.client.allocator.free(attrs); // once serialized, the value should be copied over // Need to serialize this rest_xml_body = try xml_serializer.stringifyAlloc( options.client.allocator, payload, .{ .whitespace = .indent_2, .root_name = request.fieldNameFor(ActionRequest.http_payload), .root_attributes = attrs, .emit_null_optional_fields = false, .include_declaration = false, }, ); aws_request.body = rest_xml_body.?; } } else { return error.NotImplemented; } } } return try Self.callAws(aws_request, .{ .success_http_code = Action.http_config.success_code, .region = options.region, .dualstack = options.dualstack, .client = options.client, .signing_time = options.signing_time, .diagnostics = options.diagnostics, }); } /// Calls using one of the json protocols (json_1_0, json_1_1) fn callJson(request: ActionRequest, options: Options) !FullResponseType { const target = try std.fmt.allocPrint(options.client.allocator, "{s}.{s}", .{ Self.service_meta.name, action.action_name, }); defer options.client.allocator.free(target); // The transformer needs to allocate stuff out of band, but we // can guarantee we don't need the memory after this call completes, // so we'll use an arena allocator to whack everything. // TODO: Determine if sending in null values is ok, or if we need another // tweak to the stringify function to exclude. According to the // smithy spec, "A null value MAY be provided or omitted // for a boxed member with no observable difference." But we're // seeing a lot of differences here between spec and reality const body = try std.fmt.allocPrint( options.client.allocator, "{f}", .{std.json.fmt(request, .{ .whitespace = .indent_4 })}, ); defer options.client.allocator.free(body); var content_type: []const u8 = undefined; switch (Self.service_meta.aws_protocol) { .json_1_0 => content_type = "application/x-amz-json-1.0", .json_1_1 => content_type = "application/x-amz-json-1.1", else => unreachable, } return try Self.callAws(.{ .query = "", .body = body, .content_type = content_type, .headers = @constCast(&[_]awshttp.Header{.{ .name = "X-Amz-Target", .value = target }}), }, options); } // Call using query protocol. This is documented as an XML protocol, but // throwing a JSON accept header seems to work. EC2Query is very simliar to // Query, so we'll handle both here. Realistically we probably don't effectively // handle lists and maps properly anyway yet, so we'll go for it and see // where it breaks. PRs and/or failing test cases appreciated. fn callQuery(request: ActionRequest, options: Options) !FullResponseType { var aw: std.Io.Writer.Allocating = .init(options.client.allocator); defer aw.deinit(); const writer = &aw.writer; try url.encode(options.client.allocator, request, writer, .{ .field_name_transformer = queryFieldTransformer, }); const continuation = if (aw.written().len > 0) "&" else ""; const query = if (Self.service_meta.aws_protocol == .query) "" else // EC2 try std.fmt.allocPrint(options.client.allocator, "?Action={s}&Version={s}", .{ action.action_name, Self.service_meta.version.?, // Version required for the protocol, we should panic if it is not present }); defer if (Self.service_meta.aws_protocol != .query) { options.client.allocator.free(query); }; // Note: EC2 avoided the Action={s}&Version={s} in the body, but it's // but it's required, so I'm not sure why that code was put in // originally? const body = try std.fmt.allocPrint(options.client.allocator, "Action={s}&Version={s}{s}{s}", .{ action.action_name, Self.service_meta.version.?, // Version required for the protocol, we should panic if it is not present continuation, aw.written(), }); defer options.client.allocator.free(body); return try Self.callAws(.{ .query = query, .body = body, .content_type = "application/x-www-form-urlencoded", }, options); } fn callAws(aws_request: awshttp.HttpRequest, options: Options) !FullResponseType { const response = try options.client.aws_http.callApi( Self.service_meta.endpoint_prefix, aws_request, .{ .region = options.region, .dualstack = options.dualstack, .sigv4_service_name = Self.service_meta.sigv4_name, .signing_time = options.signing_time, }, ); defer response.deinit(); if (response.response_code != options.success_http_code and response.response_code != 404) { try reportTraffic(options.client.allocator, "Call Failed", aws_request, response, log.err); if (options.diagnostics) |d| { d.http_code = response.response_code; d.response_body = try d.allocator.dupe(u8, response.body); } return error.HttpFailure; } var full_response = try getFullResponseFromBody(aws_request, response, options); errdefer full_response.deinit(); // Fill in any fields that require a header. Note doing it post-facto // assumes all response header fields are optional, which may be incorrect if (@hasDecl(action.Response, "http_header")) { log.debug("Checking headers based on type: {s}", .{@typeName(action.Response)}); const HeaderInfo = struct { name: []const u8, T: type, header_name: []const u8, }; comptime var fields = [_]?HeaderInfo{null} ** std.meta.fields(@TypeOf(action.Response.http_header)).len; inline for (std.meta.fields(@TypeOf(action.Response.http_header)), 0..) |f, inx| { fields[inx] = HeaderInfo{ .name = f.name, .T = @TypeOf(@field(full_response.response, f.name)), .header_name = @field(action.Response.http_header, f.name), }; } inline for (fields) |f| { for (response.headers) |header| { if (std.mem.eql(u8, header.name, f.?.header_name)) { log.debug("Response header {s} configured for field. Setting {s} = {s}", .{ header.name, f.?.name, header.value }); // TODO: Revisit return for this function. At the moment, there // is something in the compiler that is causing the inline for // surrounding this to start repeating elements // // https://github.com/ziglang/zig/issues/10507 // // This bug is also relevant to some of the many, // many different methods used to try to work around: // https://github.com/ziglang/zig/issues/10029 // // Note: issues found on zig 0.9.0 setHeaderValue( full_response.arena.allocator(), &full_response.response, f.?.name, f.?.T, header.value, ) catch |e| { log.err("Could not set header value: Response header {s}. Field {s}. Value {s}", .{ header.name, f.?.name, header.value }); log.err("Error: {}", .{e}); if (@errorReturnTrace()) |trace| { std.debug.dumpStackTrace(trace.*); } }; break; } } } } return full_response; } fn setHeaderValue( allocator: std.mem.Allocator, response: anytype, comptime field_name: []const u8, comptime field_type: type, value: []const u8, ) !void { // TODO: Fix this. We need to make this much more robust // The deal is we have to do the dupe though // Also, this is a memory leak atm if (field_type == ?[]const u8) { @field(response, field_name) = try allocator.dupe(u8, value); } else { @field(response, field_name) = try coerceFromString(field_type, value); } } fn getFullResponseFromBody(aws_request: awshttp.HttpRequest, response: awshttp.HttpResult, options: Options) !FullResponseType { // First, we need to determine if we care about a response at all // If the expected result has no fields, there's no sense in // doing any more work. Let's bail early const fields = @typeInfo(action.Response).@"struct".fields; var expected_body_field_len = fields.len; if (@hasDecl(action.Response, "http_header")) { expected_body_field_len -= std.meta.fields(@TypeOf(action.Response.http_header)).len; } var buf_request_id: [256]u8 = undefined; const request_id = try requestIdFromHeaders(&buf_request_id, options.client.allocator, aws_request, response); const arena = std.heap.ArenaAllocator.init(options.client.allocator); if (@hasDecl(action.Response, "http_payload")) { var rc = try FullResponseType.init(.{ .arena = arena, .response = .{}, .request_id = request_id, .raw_parsed = .{ .raw = .{} }, }); const body_field = @field(rc.response, action.Response.http_payload); const BodyField = @TypeOf(body_field); if (BodyField == []const u8 or BodyField == ?[]const u8) { expected_body_field_len = 0; // We can't use body_field for this set - only @field will work @field(rc.response, action.Response.http_payload) = try rc.arena.allocator().dupe(u8, response.body); return rc; } rc.deinit(); } // We don't care about the body if there are no fields we expect there... if (fields.len == 0 or expected_body_field_len == 0 or response.body.len == 0) { // Makes sure we can't get here with an `action.Response` that has required fields // Without this block there is a compilation error when running tests // Perhaps there is a better way to handle this { comptime var required_fields = 0; inline for (fields) |field| { const field_type_info = @typeInfo(field.type); if (field_type_info != .optional and field.defaultValue() == null) { required_fields += 1; } } if (required_fields > 0) unreachable; } // Do we care if an unexpected body comes in? return try FullResponseType.init(.{ .arena = arena, .request_id = request_id, .response = .{}, }); } const content_type = try getContentType(response.headers); return switch (content_type) { .json => try jsonReturn(aws_request, options, response), .xml => try xmlReturn(aws_request, options, response), }; } fn jsonReturn(aws_request: awshttp.HttpRequest, options: Options, response: awshttp.HttpResult) !FullResponseType { var arena = std.heap.ArenaAllocator.init(options.client.allocator); const parser_options = json.ParseOptions{ .allocator = arena.allocator(), .allow_camel_case_conversion = true, // new option .allow_snake_case_conversion = true, // new option .allow_unknown_fields = true, // new option. Cannot yet handle non-struct fields though .allow_missing_fields = false, // new option. Cannot yet handle non-struct fields though }; // Get our possible response types. There are 3: // // 1. A result wrapped with metadata like request ID. This is ServerResponse(action) // 2. A "Normal" result, which starts with { "MyActionResponse": {...} } // 3. A "Raw" result, which is simply {...} without decoration const response_types = jsonResponseTypesForAction(); // Parse the server data. Function will determine which of the three // responses we have, and do the right thing const parsed_data = try parseJsonData(response_types, response.body, options, parser_options); defer parsed_data.deinit(); const parsed_response = parsed_data.parsed_response_ptr.*; if (response_types.NormalResponse == ServerResponse(action)) { // This should only apply to query results, but we're in comptime // type land, so the only thing that matters is whether our // response is a ServerResponse // // Grab the first (and only) object from the data. Server shape expected to be: // { ActionResponse: {ActionResult: {...}, ResponseMetadata: {...} } } // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ // Next line of code pulls this portion // // // And the response property below will pull whatever is the ActionResult object // We can grab index [0] as structs are guaranteed by zig to be returned in the order // declared, and we're declaring in that order in ServerResponse(). const real_response = @field(parsed_response, @typeInfo(response_types.NormalResponse).@"struct".fields[0].name); return try FullResponseType.init(.{ .arena = arena, .response = @field(real_response, @typeInfo(@TypeOf(real_response)).@"struct".fields[0].name), .request_id = real_response.ResponseMetadata.RequestId, .raw_parsed = .{ .server = parsed_response }, }); } else { // Conditions 2 or 3 (no wrapping) var buf_request_id: [256]u8 = undefined; const request_id = try requestIdFromHeaders(&buf_request_id, options.client.allocator, aws_request, response); return try FullResponseType.init(.{ .arena = arena, .response = parsed_response, .request_id = request_id, .raw_parsed = .{ .raw = parsed_response }, }); } } fn findResult(element: *xml_shaper.Element, options: xml_shaper.ParseOptions) *xml_shaper.Element { _ = options; // We're looking for a very specific pattern here. We want only two direct // children. The first one must end with "Result", and the second should // be our ResponseMetadata node var children = element.elements(); var found_metadata = false; var result_child: ?*xml_shaper.Element = null; var inx: usize = 0; while (children.next()) |child| : (inx += 1) { if (std.mem.eql(u8, child.tag, "ResponseMetadata")) { found_metadata = true; continue; } if (std.mem.endsWith(u8, child.tag, "Result")) { result_child = child; continue; } if (inx > 1) return element; return element; // It should only be those two } return result_child orelse element; } fn xmlReturn(request: awshttp.HttpRequest, options: Options, result: awshttp.HttpResult) !FullResponseType { // Server shape be all like: // // // // 0efe31c6-cad5-4882-b275-dfea478cf039 // // // eu-north-1 // ec2.eu-north-1.amazonaws.com // opt-in-not-required // // // // // While our stuff be like: // // struct { // regions: []struct { // region_name: []const u8, // } // } // // Big thing is that requestid, which we'll need to fetch "manually" var arena = std.heap.ArenaAllocator.init(options.client.allocator); const xml_options = xml_shaper.ParseOptions{ .allocator = arena.allocator(), .elementToParse = findResult, }; var body: []const u8 = result.body; var free_body = false; if (result.body.len < 20) { std.log.err( "Unexpected response from server. Looking for XML that ends in 'Response' or 'Result'. Found:\n{s}␃\n===", .{result.body}, ); return error.UnexpectedResponse; } if (std.mem.lastIndexOf(u8, result.body[result.body.len - 20 ..], "Response>") == null and std.mem.lastIndexOf(u8, result.body[result.body.len - 20 ..], "Result>") == null) { free_body = true; // chop the "" from the front const start = if (std.mem.indexOf(u8, result.body, "?>")) |i| i else 0; body = try std.fmt.allocPrint(options.client.allocator, "{s}", .{body[start..]}); } defer if (free_body) options.client.allocator.free(body); const parsed = try xml_shaper.parse(action.Response, body, xml_options); errdefer parsed.deinit(); var buf_request_id: [256]u8 = undefined; const request_id = blk: { if (parsed.document.root.getCharData("requestId")) |elem| { break :blk elem; } break :blk try requestIdFromHeaders(&buf_request_id, options.client.allocator, request, result); }; return try FullResponseType.init(.{ .arena = arena, .response = parsed.parsed_value, .request_id = request_id, .raw_parsed = .{ .xml = parsed }, }); } const ServerResponseTypes = struct { NormalResponse: type, RawResponse: type, isRawPossible: bool, }; fn jsonResponseTypesForAction() ServerResponseTypes { // The shape of the data coming back from the server will // vary quite a bit based on the exact protocol being used, // age of the service, etc. Before we parse the data, we need // to understand what we're expecting. Because types are handled // at comptime, we are restricted in how we handle them. They must // be constants, so first we'll set up an unreasonable "NullType" // we can use in our conditionals below const NullType: type = u0; // Next, we'll provide a "SResponse", or Server Response, for a // "normal" return that modern AWS services provide, that includes // meta information and a result inside it. This could be the // response as described in our models, or it could be a wrapped // response that's only applicable to aws_query smithy protocol // services const SResponse = if (Self.service_meta.aws_protocol != .query) action.Response else ServerResponse(action); // Now, we want to also establish a "SRawResponse", or a raw // response. Some older services (like CloudFront) respect // that we desire application/json data even though they're // considered "rest_xml" protocol. However, they don't wrap // anything, so we actually want to parse the only field in // the response structure. In this case we have to manually // create the type, parse, then set the field. For example: // // Response: type = struct { // key_group_list: ?struct {... // // Normal responses would start parsing on the Response type, // but raw responses need to create an instance of the response // type, and parse "key_group_list" directly before attaching. // // Because we cannot change types at runtime, we need to create // both a SResponse and SRawResponse type in anticipation of either // scenario, then parse as appropriate later const SRawResponse = if (Self.service_meta.aws_protocol != .query and std.meta.fields(action.Response).len == 1) std.meta.fields(action.Response)[0].type else NullType; return .{ .NormalResponse = SResponse, .RawResponse = SRawResponse, .isRawPossible = SRawResponse != NullType, }; } fn ParsedJsonData(comptime T: type) type { return struct { parsed_response_ptr: *T, allocator: std.mem.Allocator, const MySelf = @This(); pub fn deinit(self: MySelf) void { self.allocator.destroy(self.parsed_response_ptr); } }; } fn parseJsonData(comptime response_types: ServerResponseTypes, data: []const u8, options: Options, parser_options: json.ParseOptions) !ParsedJsonData(response_types.NormalResponse) { // Now it's time to start looking at the actual data. Job 1 will // be to figure out if this is a raw response or wrapped const allocator = options.client.allocator; // Extract the first json key const key = firstJsonKey(data); const found_normal_json_response = std.mem.eql(u8, key, action.action_name ++ "Response") or std.mem.eql(u8, key, action.action_name ++ "Result") or isOtherNormalResponse(response_types.NormalResponse, key); var stream = json.TokenStream.init(data); const parsed_response_ptr = blk: { const ptr = try allocator.create(response_types.NormalResponse); errdefer allocator.destroy(ptr); if (!response_types.isRawPossible or found_normal_json_response) { ptr.* = (json.parse(response_types.NormalResponse, &stream, parser_options) catch |e| { log.err( \\Call successful, but unexpected response from service. \\This could be the result of a bug or a stale set of code generated \\service models. \\ \\Model Type: {} \\ \\Response from server: \\ \\{s} \\ , .{ action.Response, data }); return e; }); break :blk ptr; } log.debug("Appears server has provided a raw response", .{}); @field(ptr.*, std.meta.fields(action.Response)[0].name) = json.parse(response_types.RawResponse, &stream, parser_options) catch |e| { log.err( \\Call successful, but unexpected response from service. \\This could be the result of a bug or a stale set of code generated \\service models. \\ \\Model Type: {} \\ \\Response from server: \\ \\{s} \\ , .{ action.Response, data }); return e; }; break :blk ptr; }; return ParsedJsonData(response_types.NormalResponse){ .parsed_response_ptr = parsed_response_ptr, .allocator = allocator, }; } }; } fn isOtherNormalResponse(comptime T: type, first_key: []const u8) bool { const fields = std.meta.fields(T); if (fields.len != 1) return false; const first_field = fields[0]; if (!@hasDecl(T, "fieldNameFor")) return false; const expected_key = T.fieldNameFor(undefined, first_field.name); return std.mem.eql(u8, first_key, expected_key); } fn coerceFromString(comptime T: type, val: []const u8) anyerror!T { if (@typeInfo(T) == .optional) return try coerceFromString(@typeInfo(T).optional.child, val); // TODO: This is terrible...fix it switch (T) { bool => return std.ascii.eqlIgnoreCase(val, "true"), i64, i128 => return parseInt(T, val) catch |e| { log.err("Invalid string representing {s}: {s}", .{ @typeName(T), val }); return e; }, f64, f128 => return std.fmt.parseFloat(T, val) catch |e| { log.err("Invalid string representing {s}: {s}", .{ @typeName(T), val }); return e; }, date.Timestamp => return date.Timestamp.parse(val) catch |e| { log.debug("Failed to parse timestamp from string '{s}': {}", .{ val, e }); return e; }, else => return val, } } fn parseInt(comptime T: type, val: []const u8) !T { const rc = std.fmt.parseInt(T, val, 10); if (!std.meta.isError(rc)) return rc; if (T == i64) { return date.parseEnglishToTimestamp(val) catch |e| { log.err("Error coercing date string '{s}' to timestamp value", .{val}); return e; }; } if (T == f128) { return @as(f128, date.parseEnglishToTimestamp(val)) catch |e| { log.err("Error coercing date string '{s}' to timestamp value", .{val}); return e; }; } log.err("Error parsing string '{s}' to integer", .{val}); return rc; } fn generalAllocPrint(allocator: std.mem.Allocator, val: anytype) !?[]const u8 { const T = @TypeOf(val); switch (@typeInfo(T)) { .optional => if (val) |v| return generalAllocPrint(allocator, v) else return null, .array, .pointer => switch (@typeInfo(T)) { .array => return try std.fmt.allocPrint(allocator, "{s}", .{val}), .pointer => |info| switch (info.size) { .one => return try std.fmt.allocPrint(allocator, "{s}", .{val}), .many => return try std.fmt.allocPrint(allocator, "{s}", .{val}), .slice => { log.warn( "printing object of type [][]const u8...pretty sure this is wrong: {any}", .{val}, ); return try std.fmt.allocPrint(allocator, "{any}", .{val}); }, .c => return try std.fmt.allocPrint(allocator, "{s}", .{val}), }, else => {}, }, else => return try std.fmt.allocPrint(allocator, "{any}", .{val}), } } fn headersFor(allocator: std.mem.Allocator, request: anytype) ![]awshttp.Header { log.debug("Checking for headers to include for type {}", .{@TypeOf(request)}); if (!@hasDecl(@TypeOf(request), "http_header")) return &[_]awshttp.Header{}; const http_header = @TypeOf(request).http_header; const fields = std.meta.fields(@TypeOf(http_header)); log.debug("Found {d} possible custom headers", .{fields.len}); // It would be awesome to have a fixed array, but we can't because // it depends on a runtime value based on whether these variables are null var headers = try std.ArrayList(awshttp.Header).initCapacity(allocator, fields.len); defer headers.deinit(allocator); inline for (fields) |f| { // Header name = value of field // Header value = value of the field of the request based on field name const val = @field(request, f.name); const final_val: ?[]const u8 = try generalAllocPrint(allocator, val); if (final_val) |v| { headers.appendAssumeCapacity(.{ .name = @field(http_header, f.name), .value = v, }); } } return headers.toOwnedSlice(allocator); } fn freeHeadersFor(allocator: std.mem.Allocator, request: anytype, headers: []const awshttp.Header) void { if (!@hasDecl(@TypeOf(request), "http_header")) return; const http_header = @TypeOf(request).http_header; const fields = std.meta.fields(@TypeOf(http_header)); inline for (fields) |f| { const header_name = @field(http_header, f.name); for (headers) |h| { if (std.mem.eql(u8, h.name, header_name)) { allocator.free(h.value); break; } } } allocator.free(headers); } fn firstJsonKey(data: []const u8) []const u8 { const start = std.mem.indexOf(u8, data, "\"") orelse 0; // Should never be 0 if (start == 0) log.warn("Response body missing json key?!", .{}); var end = std.mem.indexOf(u8, data[start + 1 ..], "\"") orelse 0; if (end == 0) log.warn("Response body only has one double quote?!", .{}); end = end + start + 1; const key = data[start + 1 .. end]; log.debug("First json key: {s}", .{key}); return key; } pub const ContentType = enum { json, xml, }; fn getContentType(headers: []const awshttp.Header) !ContentType { // EC2 ignores our accept type, but technically query protocol only // returns XML as well. So, we'll ignore the protocol here and just // look at the return type for (headers) |h| { if (std.ascii.eqlIgnoreCase("Content-Type", h.name)) { if (std.mem.startsWith(u8, h.value, "application/json")) { return .json; } else if (std.mem.startsWith(u8, h.value, "application/x-amz-json-1.0")) { return .json; } else if (std.mem.startsWith(u8, h.value, "application/x-amz-json-1.1")) { return .json; } else if (std.mem.startsWith(u8, h.value, "text/xml")) { return .xml; } else if (std.mem.startsWith(u8, h.value, "application/xml")) { return .xml; } else { log.err("Unexpected content type: {s}", .{h.value}); return error.UnexpectedContentType; } break; } } return error.ContentTypeNotFound; } /// Get request ID from headers. /// Allocation is only used in case of an error. Caller does not need to free the returned buffer. fn requestIdFromHeaders(buf: []u8, allocator: std.mem.Allocator, request: awshttp.HttpRequest, response: awshttp.HttpResult) ![]u8 { var rid: ?[]const u8 = null; // This "thing" is called: // * Host ID // * Extended Request ID // * Request ID 2 // // I suspect it identifies the S3 frontend server and they are // trying to obscure that fact. But several SDKs go with host id, // so we'll use that var host_id: ?[]const u8 = null; for (response.headers) |header| { if (std.ascii.eqlIgnoreCase(header.name, "x-amzn-requestid")) // CloudFront rid = header.value; if (std.ascii.eqlIgnoreCase(header.name, "x-amz-request-id")) // S3 rid = header.value; if (std.ascii.eqlIgnoreCase(header.name, "x-amz-id-2")) // S3 host_id = header.value; } if (rid) |r| { if (host_id) |h| { return try std.fmt.bufPrint(buf, "{s}, host_id: {s}", .{ r, h }); } @memcpy(buf[0..r.len], r); return buf[0..r.len]; } try reportTraffic(allocator, "Request ID not found", request, response, log.err); return error.RequestIdNotFound; } fn ServerResponse(comptime action: anytype) type { const T = action.Response; // NOTE: The non-standard capitalization here is used as a performance // enhancement and to reduce allocations in json.zig. These fields are // not (nor are they ever intended to be) exposed outside this codebase const ResponseMetadata = struct { RequestId: []u8, }; const Result = @Type(.{ .@"struct" = .{ .layout = .auto, .fields = &[_]std.builtin.Type.StructField{ .{ .name = action.action_name ++ "Result", .type = T, .default_value_ptr = null, .is_comptime = false, .alignment = std.meta.alignment(T), }, .{ .name = "ResponseMetadata", .type = ResponseMetadata, .default_value_ptr = null, .is_comptime = false, .alignment = std.meta.alignment(ResponseMetadata), }, }, .decls = &[_]std.builtin.Type.Declaration{}, .is_tuple = false, }, }); return @Type(.{ .@"struct" = .{ .layout = .auto, .fields = &[_]std.builtin.Type.StructField{ .{ .name = action.action_name ++ "Response", .type = Result, .default_value_ptr = null, .is_comptime = false, .alignment = std.meta.alignment(Result), }, }, .decls = &[_]std.builtin.Type.Declaration{}, .is_tuple = false, }, }); } fn FullResponse(comptime action: anytype) type { return struct { pub const ResponseMetadata = struct { request_id: []const u8, }; pub const RawParsed = union(enum) { server: ServerResponse(action), raw: action.Response, xml: xml_shaper.Parsed(action.Response), }; pub const FullResponseOptions = struct { response: action.Response = undefined, request_id: []const u8, raw_parsed: RawParsed = .{ .raw = undefined }, arena: std.heap.ArenaAllocator, }; response: action.Response = undefined, raw_parsed: RawParsed = .{ .raw = undefined }, response_metadata: ResponseMetadata, arena: std.heap.ArenaAllocator, const Self = @This(); pub fn init(options: FullResponseOptions) !Self { var arena = options.arena; const request_id = try arena.allocator().dupe(u8, options.request_id); return Self{ .arena = arena, .response = options.response, .raw_parsed = options.raw_parsed, .response_metadata = .{ .request_id = request_id, }, }; } pub fn deinit(self: Self) void { self.arena.deinit(); } }; } fn safeFree(allocator: std.mem.Allocator, obj: anytype) void { switch (@typeInfo(@TypeOf(obj))) { .pointer => allocator.free(obj), .optional => if (obj) |o| safeFree(allocator, o), else => {}, } } fn queryFieldTransformer(allocator: std.mem.Allocator, field_name: []const u8) anyerror![]const u8 { var reader = std.Io.Reader.fixed(field_name); var aw = try std.Io.Writer.Allocating.initCapacity(allocator, 100); defer aw.deinit(); const writer = &aw.writer; try case.to(.pascal, &reader, writer); return aw.toOwnedSlice(); // return try case.snakeToPascal(allocator, field_name); } fn buildPath( allocator: std.mem.Allocator, raw_uri: []const u8, comptime ActionRequest: type, request: anytype, encode_slash: bool, replaced_fields: *std.ArrayList([]const u8), ) ![]const u8 { var buffer = try std.ArrayList(u8).initCapacity(allocator, raw_uri.len); defer buffer.deinit(allocator); var in_label = false; var start: usize = 0; for (raw_uri, 0..) |c, inx| { switch (c) { '{' => { in_label = true; start = inx + 1; }, '}' => { in_label = false; // The label may be "greedy" (uses a '+' at the end), but // it's not clear if that effects this processing var end = inx; if (raw_uri[inx - 1] == '+') end -= 1; const replacement_label = raw_uri[start..end]; inline for (std.meta.fields(ActionRequest)) |field| { if (std.mem.eql(u8, request.fieldNameFor(field.name), replacement_label)) { try replaced_fields.append(allocator, replacement_label); var replacement_buffer = try std.ArrayList(u8).initCapacity(allocator, raw_uri.len); defer replacement_buffer.deinit(allocator); var encoded_buffer = std.Io.Writer.Allocating.init(allocator); defer encoded_buffer.deinit(); try (&encoded_buffer.writer).print( "{f}", .{std.json.fmt( @field(request, field.name), .{ .whitespace = .indent_4 }, )}, ); const trimmed_replacement_val = std.mem.trim(u8, replacement_buffer.items, "\""); // NOTE: We have to encode here as it is a portion of the rest JSON protocol. // This makes the encoding in the standard library wrong try uriEncode(trimmed_replacement_val, &encoded_buffer.writer, encode_slash); try buffer.appendSlice(allocator, encoded_buffer.written()); } } }, else => if (!in_label) { try buffer.append(allocator, c); } else {}, } } return buffer.toOwnedSlice(allocator); } fn uriEncode(input: []const u8, writer: *std.Io.Writer, encode_slash: bool) !void { for (input) |c| try uriEncodeByte(c, writer, encode_slash); } fn uriEncodeByte(char: u8, writer: *std.Io.Writer, encode_slash: bool) !void { switch (char) { '!' => _ = try writer.write("%21"), '#' => _ = try writer.write("%23"), '$' => _ = try writer.write("%24"), '&' => _ = try writer.write("%26"), '\'' => _ = try writer.write("%27"), '(' => _ = try writer.write("%28"), ')' => _ = try writer.write("%29"), '*' => _ = try writer.write("%2A"), '+' => _ = try writer.write("%2B"), ',' => _ = try writer.write("%2C"), '/' => _ = if (encode_slash) try writer.write("%2F") else try writer.write("/"), ':' => _ = try writer.write("%3A"), ';' => _ = try writer.write("%3B"), '=' => _ = try writer.write("%3D"), '?' => _ = try writer.write("%3F"), '@' => _ = try writer.write("%40"), '[' => _ = try writer.write("%5B"), ']' => _ = try writer.write("%5D"), '%' => _ = try writer.write("%25"), else => { _ = try writer.writeByte(char); }, } } fn buildQuery(allocator: std.mem.Allocator, request: anytype) error{ WriteFailed, OutOfMemory }![]const u8 { // query should look something like this: // pub const http_query = .{ // .master_region = "MasterRegion", // .function_version = "FunctionVersion", // .marker = "Marker", // }; var buffer = std.Io.Writer.Allocating.init(allocator); defer buffer.deinit(); const writer = &buffer.writer; var prefix = "?"; if (@hasDecl(@TypeOf(request), "http_query")) { const query_arguments = @field(@TypeOf(request), "http_query"); inline for (@typeInfo(@TypeOf(query_arguments)).@"struct".fields) |arg| { const val = @field(request, arg.name); if (try addQueryArg(arg.type, prefix, @field(query_arguments, arg.name), val, writer)) prefix = "&"; } } return buffer.toOwnedSlice(); } fn addQueryArg(comptime ValueType: type, prefix: []const u8, key: []const u8, value: anytype, writer: *std.Io.Writer) std.Io.Writer.Error!bool { switch (@typeInfo(@TypeOf(value))) { .optional => { if (value) |v| return try addQueryArg(ValueType, prefix, key, v, writer); return false; }, // if this is a pointer, we want to make sure it is more than just a string .pointer => |ptr| { if (ptr.child == u8 or ptr.size != .slice) { // This is just a string return try addBasicQueryArg(prefix, key, value, writer); } var p = prefix; for (value) |li| { if (try addQueryArg(ValueType, p, key, li, writer)) p = "&"; } return std.mem.eql(u8, "&", p); }, .array => |arr| { if (arr.child == u8) return try addBasicQueryArg(prefix, key, value, writer); var p = prefix; for (value) |li| { if (try addQueryArg(ValueType, p, key, li, writer)) p = "&"; } return std.mem.eql(u8, "&", p); }, else => { return try addBasicQueryArg(prefix, key, value, writer); }, } } fn addBasicQueryArg(prefix: []const u8, key: []const u8, value: anytype, writer: *std.Io.Writer) std.Io.Writer.Error!bool { _ = try writer.write(prefix); // TODO: url escaping try uriEncode(key, writer, true); _ = try writer.write("="); var encoding_writer = UriEncodingWriter.init(writer); var ignoring_writer = IgnoringWriter.init(&encoding_writer.writer, '"'); try ignoring_writer.writer.print("{f}", .{std.json.fmt(value, .{})}); return true; } const UriEncodingWriter = struct { child_writer: *std.Io.Writer, writer: std.Io.Writer, pub fn init(child: *std.Io.Writer) UriEncodingWriter { return .{ .child_writer = child, .writer = .{ .buffer = &.{}, .vtable = &.{ .drain = drain, }, }, }; } fn drain(w: *std.Io.Writer, data: []const []const u8, splat: usize) std.Io.Writer.Error!usize { if (splat > 1) return error.WriteFailed; // no splat support const self: *UriEncodingWriter = @fieldParentPtr("writer", w); var total: usize = 0; for (data) |bytes| { try uriEncode(bytes, self.child_writer, true); total += bytes.len; } return total; // We say that all bytes are "written", even if they're not, as caller may be retrying } }; /// A Writer that ignores a character const IgnoringWriter = struct { child_writer: *std.Io.Writer, ignore: u8, writer: std.Io.Writer, pub fn init(child: *std.Io.Writer, ignore: u8) IgnoringWriter { return .{ .child_writer = child, .ignore = ignore, .writer = .{ .buffer = &.{}, .vtable = &.{ .drain = drain, }, }, }; } fn drain(w: *std.Io.Writer, data: []const []const u8, splat: usize) std.Io.Writer.Error!usize { if (splat > 1) return error.WriteFailed; // no splat support const self: *IgnoringWriter = @fieldParentPtr("writer", w); var total: usize = 0; for (data) |bytes| { for (bytes) |b| if (b != self.ignore) try self.child_writer.writeByte(b); total += bytes.len; } return total; // We say that all bytes are "written", even if they're not, as caller may be retrying } }; fn reportTraffic( allocator: std.mem.Allocator, info: []const u8, request: awshttp.HttpRequest, response: awshttp.HttpResult, comptime reporter: fn (comptime []const u8, anytype) void, ) !void { var msg = try std.Io.Writer.Allocating.initCapacity(allocator, 256); defer msg.deinit(); const writer = &msg.writer; try writer.print("{s}\n\n", .{info}); try writer.print("Return status: {d}\n\n", .{response.response_code}); if (request.query.len > 0) try writer.print("Request Query:\n \t{s}\n", .{request.query}); _ = try writer.write("Unique Request Headers:\n"); if (request.headers.len > 0) { for (request.headers) |h| try writer.print("\t{s}: {s}\n", .{ h.name, h.value }); } try writer.print("\tContent-Type: {s}\n\n", .{request.content_type}); try writer.print("Request URL: {s}\n", .{request.path}); try writer.writeAll("Request Body:\n"); try writer.print("-------------\n{s}\n", .{request.body}); _ = try writer.write("-------------\n"); _ = try writer.write("Response Headers:\n"); for (response.headers) |h| try writer.print("\t{s}: {s}\n", .{ h.name, h.value }); _ = try writer.write("Response Body:\n"); try writer.print("--------------\n{s}\n", .{response.body}); _ = try writer.write("--------------\n"); reporter("{s}\n", .{msg.written()}); } test { _ = @import("aws_test.zig"); } // buildQuery/buildPath tests, which are here as they are a) generic and b) private test "REST Json v1 builds proper queries" { const allocator = std.testing.allocator; const svs = Services(.{.lambda}){}; const request = svs.lambda.list_functions.Request{ .max_items = 1, }; const query = try buildQuery(allocator, request); defer allocator.free(query); try std.testing.expectEqualStrings("?MaxItems=1", query); } test "REST Json v1 handles reserved chars in queries" { const allocator = std.testing.allocator; const svs = Services(.{.lambda}){}; var keys = [_][]const u8{"Foo?I'm a crazy%dude"}; // Would love to have a way to express this without burning a var here const request = svs.lambda.untag_resource.Request{ .tag_keys = keys[0..], .resource = "hello", }; const query = try buildQuery(allocator, request); defer allocator.free(query); try std.testing.expectEqualStrings("?tagKeys=Foo%3FI%27m a crazy%25dude", query); } test "REST Json v1 serializes lists in queries" { const allocator = std.testing.allocator; const svs = Services(.{.lambda}){}; var keys = [_][]const u8{ "Foo", "Bar" }; // Would love to have a way to express this without burning a var here const request = svs.lambda.untag_resource.Request{ .tag_keys = keys[0..], .resource = "hello", }; const query = try buildQuery(allocator, request); defer allocator.free(query); try std.testing.expectEqualStrings("?tagKeys=Foo&tagKeys=Bar", query); } test "REST Json v1 buildpath substitutes" { const allocator = std.testing.allocator; var al = std.ArrayList([]const u8){}; defer al.deinit(allocator); const svs = Services(.{.lambda}){}; const request = svs.lambda.list_functions.Request{ .max_items = 1, }; const input_path = "https://myhost/{MaxItems}/"; const output_path = try buildPath(allocator, input_path, @TypeOf(request), request, true, &al); defer allocator.free(output_path); try std.testing.expectEqualStrings("https://myhost/1/", output_path); } test "REST Json v1 buildpath handles restricted characters" { if (true) return error.SkipZigTest; const allocator = std.testing.allocator; var al = std.ArrayList([]const u8){}; defer al.deinit(allocator); const svs = Services(.{.lambda}){}; const request = svs.lambda.list_functions.Request{ .marker = ":", }; const input_path = "https://myhost/{Marker}/"; const output_path = try buildPath(allocator, input_path, @TypeOf(request), request, true, &al); defer allocator.free(output_path); try std.testing.expectEqualStrings("https://myhost/%3A/", output_path); }