{ "smithy": "1.0", "metadata": { "suppressions": [ { "id": "HttpMethodSemantics", "namespace": "*" }, { "id": "HttpResponseCodeSemantics", "namespace": "*" }, { "id": "PaginatedTrait", "namespace": "*" }, { "id": "HttpHeaderTrait", "namespace": "*" }, { "id": "HttpUriConflict", "namespace": "*" }, { "id": "Service", "namespace": "*" } ] }, "shapes": { "com.amazonaws.machinelearning#AddTags": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#AddTagsInput" }, "output": { "target": "com.amazonaws.machinelearning#AddTagsOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#InvalidTagException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" }, { "target": "com.amazonaws.machinelearning#TagLimitExceededException" } ], "traits": { "smithy.api#documentation": "

Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key \n\t\t and an optional value. If you add a tag using a key that is already associated with the ML object, \n\t\t\tAddTags updates the tag's value.

" } }, "com.amazonaws.machinelearning#AddTagsInput": { "type": "structure", "members": { "Tags": { "target": "com.amazonaws.machinelearning#TagList", "traits": { "smithy.api#documentation": "

The key-value pairs to use to create tags. If you specify a key without specifying a value, Amazon ML creates a tag with the specified key and a value of null.

", "smithy.api#required": {} } }, "ResourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the ML object to tag. For example, exampleModelId.

", "smithy.api#required": {} } }, "ResourceType": { "target": "com.amazonaws.machinelearning#TaggableResourceType", "traits": { "smithy.api#documentation": "

The type of the ML object to tag.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#AddTagsOutput": { "type": "structure", "members": { "ResourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the ML object that was tagged.

" } }, "ResourceType": { "target": "com.amazonaws.machinelearning#TaggableResourceType", "traits": { "smithy.api#documentation": "

The type of the ML object that was tagged.

" } } }, "traits": { "smithy.api#documentation": "

Amazon ML returns the following elements.

" } }, "com.amazonaws.machinelearning#Algorithm": { "type": "string", "traits": { "smithy.api#documentation": "

The function used to train an MLModel. Training choices supported by Amazon ML include the following:

\n ", "smithy.api#enum": [ { "value": "sgd", "name": "SGD" } ] } }, "com.amazonaws.machinelearning#AmazonML_20141212": { "type": "service", "version": "2014-12-12", "operations": [ { "target": "com.amazonaws.machinelearning#AddTags" }, { "target": "com.amazonaws.machinelearning#CreateBatchPrediction" }, { "target": "com.amazonaws.machinelearning#CreateDataSourceFromRDS" }, { "target": "com.amazonaws.machinelearning#CreateDataSourceFromRedshift" }, { "target": "com.amazonaws.machinelearning#CreateDataSourceFromS3" }, { "target": "com.amazonaws.machinelearning#CreateEvaluation" }, { "target": "com.amazonaws.machinelearning#CreateMLModel" }, { "target": "com.amazonaws.machinelearning#CreateRealtimeEndpoint" }, { "target": "com.amazonaws.machinelearning#DeleteBatchPrediction" }, { "target": "com.amazonaws.machinelearning#DeleteDataSource" }, { "target": "com.amazonaws.machinelearning#DeleteEvaluation" }, { "target": "com.amazonaws.machinelearning#DeleteMLModel" }, { "target": "com.amazonaws.machinelearning#DeleteRealtimeEndpoint" }, { "target": "com.amazonaws.machinelearning#DeleteTags" }, { "target": "com.amazonaws.machinelearning#DescribeBatchPredictions" }, { "target": "com.amazonaws.machinelearning#DescribeDataSources" }, { "target": "com.amazonaws.machinelearning#DescribeEvaluations" }, { "target": "com.amazonaws.machinelearning#DescribeMLModels" }, { "target": "com.amazonaws.machinelearning#DescribeTags" }, { "target": "com.amazonaws.machinelearning#GetBatchPrediction" }, { "target": "com.amazonaws.machinelearning#GetDataSource" }, { "target": "com.amazonaws.machinelearning#GetEvaluation" }, { "target": "com.amazonaws.machinelearning#GetMLModel" }, { "target": "com.amazonaws.machinelearning#Predict" }, { "target": "com.amazonaws.machinelearning#UpdateBatchPrediction" }, { "target": "com.amazonaws.machinelearning#UpdateDataSource" }, { "target": "com.amazonaws.machinelearning#UpdateEvaluation" }, { "target": "com.amazonaws.machinelearning#UpdateMLModel" } ], "traits": { "aws.api#service": { "sdkId": "Machine Learning", "arnNamespace": "machinelearning", "cloudFormationName": "MachineLearning", "cloudTrailEventSource": "machinelearning.amazonaws.com", "endpointPrefix": "machinelearning" }, "aws.auth#sigv4": { "name": "machinelearning" }, "aws.protocols#awsJson1_1": {}, "smithy.api#documentation": "Definition of the public APIs\n\t\texposed by Amazon Machine Learning", "smithy.api#title": "Amazon Machine Learning", "smithy.api#xmlNamespace": { "uri": "http://machinelearning.amazonaws.com/doc/2014-12-12/" } } }, "com.amazonaws.machinelearning#AwsUserArn": { "type": "string", "traits": { "smithy.api#documentation": "

An Amazon Web Service (AWS) user account identifier. The account identifier can be an AWS root account or an AWS Identity and Access Management (IAM) user.

", "smithy.api#pattern": "arn:aws:iam::[0-9]+:((user/.+)|(root))" } }, "com.amazonaws.machinelearning#BatchPrediction": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the BatchPrediction at creation. This value should be identical to the value of the BatchPredictionID \n in the request.\n

" } }, "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the MLModel that generated predictions for the BatchPrediction request.

" } }, "BatchPredictionDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the DataSource that points to the group of observations to predict.

" } }, "InputDataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account that invoked the BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the BatchPrediction was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the BatchPrediction. The time is expressed in epoch time.

" } }, "Name": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the BatchPrediction.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The status of the BatchPrediction. This element can have one of the following values:

\n " } }, "OutputUri": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of an Amazon S3 bucket or directory to receive the operation results. The following substrings are not allowed in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about processing the batch prediction request.

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType" }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime" }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime" }, "TotalRecordCount": { "target": "com.amazonaws.machinelearning#LongType" }, "InvalidRecordCount": { "target": "com.amazonaws.machinelearning#LongType" } }, "traits": { "smithy.api#documentation": "

Represents the output of a GetBatchPrediction operation.

\n

The content consists of the detailed metadata, the status, and the data file information of a\n Batch Prediction.

" } }, "com.amazonaws.machinelearning#BatchPredictionFilterVariable": { "type": "string", "traits": { "smithy.api#documentation": "

A list of the variables to use in searching or filtering BatchPrediction.

\n ", "smithy.api#enum": [ { "value": "CreatedAt", "name": "CREATED_AT" }, { "value": "LastUpdatedAt", "name": "LAST_UPDATED_AT" }, { "value": "Status", "name": "STATUS" }, { "value": "Name", "name": "NAME" }, { "value": "IAMUser", "name": "IAM_USER" }, { "value": "MLModelId", "name": "ML_MODEL_ID" }, { "value": "DataSourceId", "name": "DATASOURCE_ID" }, { "value": "DataURI", "name": "DATA_URI" } ] } }, "com.amazonaws.machinelearning#BatchPredictions": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#BatchPrediction" } }, "com.amazonaws.machinelearning#ComparatorValue": { "type": "string", "traits": { "smithy.api#documentation": "

The value specified in a filtering condition. The ComparatorValue becomes the reference value when matching or evaluating \n data values in filtering and searching functions.

", "smithy.api#length": { "min": 0, "max": 1024 }, "smithy.api#pattern": ".*\\S.*|^$" } }, "com.amazonaws.machinelearning#ComputeStatistics": { "type": "boolean" }, "com.amazonaws.machinelearning#CreateBatchPrediction": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateBatchPredictionInput" }, "output": { "target": "com.amazonaws.machinelearning#CreateBatchPredictionOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#IdempotentParameterMismatchException" }, { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Generates predictions for a group of observations. The observations to process exist in one or more data files referenced \n by a DataSource. This operation creates a new BatchPrediction, and uses an MLModel and the data \n files referenced by the DataSource as information sources. \n

\n \n

\n CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction, \n Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction status to PENDING. \n After the BatchPrediction completes, Amazon ML sets the status to COMPLETED. \n

\n

You can poll for status updates by using the GetBatchPrediction operation and checking the Status parameter of the result. After the COMPLETED status appears, \n the results are available in the location specified by the OutputUri parameter.

" } }, "com.amazonaws.machinelearning#CreateBatchPredictionInput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the\n BatchPrediction.

", "smithy.api#required": {} } }, "BatchPredictionName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the BatchPrediction. BatchPredictionName can only use the UTF-8 character set.

" } }, "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the MLModel that will generate predictions for the group of observations.

", "smithy.api#required": {} } }, "BatchPredictionDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the DataSource that points to the group of observations to predict.

", "smithy.api#required": {} } }, "OutputUri": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory to store the batch prediction results. The following substrings are not allowed in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.

\n

Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the Amazon Machine Learning Developer Guide.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#CreateBatchPredictionOutput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the BatchPrediction. This value is identical to the value of the \n BatchPredictionId in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a CreateBatchPrediction operation, and is an acknowledgement that Amazon ML received the request.

\n

The CreateBatchPrediction operation is asynchronous. You can poll for status updates by using the >GetBatchPrediction \n operation and checking the Status parameter of the result.\n

" } }, "com.amazonaws.machinelearning#CreateDataSourceFromRDS": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateDataSourceFromRDSInput" }, "output": { "target": "com.amazonaws.machinelearning#CreateDataSourceFromRDSOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#IdempotentParameterMismatchException" }, { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Creates a DataSource object from an Amazon Relational Database Service (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.

\n \n

\n CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS, \n Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. \n After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED. \n DataSource in the COMPLETED or PENDING state can\n be used only to perform >CreateMLModel>, CreateEvaluation, or CreateBatchPrediction operations.\n

\n

\n If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message attribute of the GetDataSource operation response.\n

" } }, "com.amazonaws.machinelearning#CreateDataSourceFromRDSInput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the DataSource. Typically, an Amazon Resource Number (ARN) \n becomes the ID for a DataSource.

", "smithy.api#required": {} } }, "DataSourceName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the DataSource.

" } }, "RDSData": { "target": "com.amazonaws.machinelearning#RDSDataSpec", "traits": { "smithy.api#documentation": "

The data specification of an Amazon RDS DataSource:

\n ", "smithy.api#required": {} } }, "RoleARN": { "target": "com.amazonaws.machinelearning#RoleARN", "traits": { "smithy.api#documentation": "

The role that Amazon ML assumes on behalf of the user to create and activate a data\n pipeline in the user's account and copy data using the SelectSqlQuery query from Amazon RDS to Amazon S3.

\n

", "smithy.api#required": {} } }, "ComputeStatistics": { "target": "com.amazonaws.machinelearning#ComputeStatistics", "traits": { "smithy.api#documentation": "

The compute statistics for a DataSource. The statistics are generated from the observation data referenced by \n a DataSource. Amazon ML uses the statistics internally during MLModel training.\n This parameter must be set to true if the DataSource needs to be used for MLModel training.\n

" } } } }, "com.amazonaws.machinelearning#CreateDataSourceFromRDSOutput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the \n DataSourceID in the request.\n

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement that Amazon ML received the request.

\n

The CreateDataSourceFromRDS> operation is asynchronous. You can poll for updates by using\n the GetBatchPrediction operation and checking the Status parameter. You can \n inspect the Message when Status shows up as FAILED. You can\n also check the progress of the copy operation by going to the DataPipeline console and looking up\n the pipeline using the pipelineId from the describe call.

" } }, "com.amazonaws.machinelearning#CreateDataSourceFromRedshift": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateDataSourceFromRedshiftInput" }, "output": { "target": "com.amazonaws.machinelearning#CreateDataSourceFromRedshiftOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#IdempotentParameterMismatchException" }, { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Creates a DataSource from a database hosted on an Amazon Redshift cluster. A \n\t\tDataSource references data that can be used to perform either CreateMLModel, CreateEvaluation, or CreateBatchPrediction \n\t\toperations.

\n \n

\n CreateDataSourceFromRedshift is an asynchronous operation. In response to CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING. \n After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED. \n DataSource in COMPLETED or PENDING states can be\n used to perform only CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.\n

\n\n

\n If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message \n\t\t attribute of the GetDataSource operation response.\n

\n\n

The observations should be contained in the database hosted on an Amazon Redshift cluster\n and should be specified by a SelectSqlQuery query. Amazon ML executes an\n Unload command in Amazon Redshift to transfer the result set of\n the SelectSqlQuery query to S3StagingLocation.

\n\n

After the DataSource has been created, it's ready for use in evaluations and\n batch predictions. If you plan to use the DataSource to train an\n MLModel, the DataSource also requires a recipe. A recipe\n describes how each input variable will be used in training an MLModel. Will\n the variable be included or excluded from training? Will the variable be manipulated;\n for example, will it be combined with another variable or will it be split apart into\n word combinations? The recipe provides answers to these questions.

\n

You can't change an existing datasource, but you can copy and modify the settings from an\n existing Amazon Redshift datasource to create a new datasource. To do so, call\n GetDataSource for an existing datasource and copy the values to a\n CreateDataSource call. Change the settings that you want to change and\n make sure that all required fields have the appropriate values.

" } }, "com.amazonaws.machinelearning#CreateDataSourceFromRedshiftInput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the DataSource.

", "smithy.api#required": {} } }, "DataSourceName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the DataSource.

" } }, "DataSpec": { "target": "com.amazonaws.machinelearning#RedshiftDataSpec", "traits": { "smithy.api#documentation": "

The data specification of an Amazon Redshift DataSource:

\n ", "smithy.api#required": {} } }, "RoleARN": { "target": "com.amazonaws.machinelearning#RoleARN", "traits": { "smithy.api#documentation": "

A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:

\n \n ", "smithy.api#required": {} } }, "ComputeStatistics": { "target": "com.amazonaws.machinelearning#ComputeStatistics", "traits": { "smithy.api#documentation": "

The compute statistics for a DataSource. The statistics are generated from the observation data referenced by \n a DataSource. Amazon ML uses the statistics internally during MLModel training.\n This parameter must be set to true if the DataSource needs to\n be used for MLModel training.

" } } } }, "com.amazonaws.machinelearning#CreateDataSourceFromRedshiftOutput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the \n DataSourceID in the request.\n

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a CreateDataSourceFromRedshift operation, and is an acknowledgement that Amazon ML received the request.

\n

The CreateDataSourceFromRedshift operation is asynchronous. You can poll for updates by using\n the GetBatchPrediction operation and checking the Status parameter.

" } }, "com.amazonaws.machinelearning#CreateDataSourceFromS3": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateDataSourceFromS3Input" }, "output": { "target": "com.amazonaws.machinelearning#CreateDataSourceFromS3Output" }, "errors": [ { "target": "com.amazonaws.machinelearning#IdempotentParameterMismatchException" }, { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Creates a DataSource object. A DataSource references data that\n can be used to perform CreateMLModel, CreateEvaluation, or\n CreateBatchPrediction operations.

\n \n

\n CreateDataSourceFromS3 is an asynchronous operation. In response to\n CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately\n returns and sets the DataSource status to PENDING. After the\n DataSource has been created and is ready for use, Amazon ML sets the\n Status parameter to COMPLETED. DataSource in\n the COMPLETED or PENDING state can be used to perform only\n CreateMLModel, CreateEvaluation or\n CreateBatchPrediction operations.

\n \n

If Amazon ML can't accept the input source, it sets the Status parameter to\n FAILED and includes an error message in the Message\n attribute of the GetDataSource operation response.

\n\n

The observation data used in a DataSource should be ready to use; that is,\n it should have a consistent structure, and missing data values should be kept to a\n minimum. The observation data must reside in one or more .csv files in an Amazon Simple\n Storage Service (Amazon S3) location, along with a schema that describes the data items\n by name and type. The same schema must be used for all of the data files referenced by\n the DataSource.

\n

After the DataSource has been created, it's ready to use in evaluations and\n batch predictions. If you plan to use the DataSource to train an\n MLModel, the DataSource also needs a recipe. A recipe\n describes how each input variable will be used in training an MLModel. Will\n the variable be included or excluded from training? Will the variable be manipulated;\n for example, will it be combined with another variable or will it be split apart into\n word combinations? The recipe provides answers to these questions.

" } }, "com.amazonaws.machinelearning#CreateDataSourceFromS3Input": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied identifier that uniquely identifies the DataSource.

", "smithy.api#required": {} } }, "DataSourceName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the DataSource.

" } }, "DataSpec": { "target": "com.amazonaws.machinelearning#S3DataSpec", "traits": { "smithy.api#documentation": "

The data specification of a DataSource:

\n ", "smithy.api#required": {} } }, "ComputeStatistics": { "target": "com.amazonaws.machinelearning#ComputeStatistics", "traits": { "smithy.api#documentation": "

The compute statistics for a DataSource. The statistics are generated from the observation data referenced by \n a DataSource. Amazon ML uses the statistics internally during MLModel training.\n This parameter must be set to true if the DataSource needs to be used for MLModel training.

" } } } }, "com.amazonaws.machinelearning#CreateDataSourceFromS3Output": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the DataSource. This value should be identical to the value of the \n DataSourceID in the request.\n

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement that Amazon ML received the request.

\n

The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates by using\n the GetBatchPrediction operation and checking the Status parameter.

" } }, "com.amazonaws.machinelearning#CreateEvaluation": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateEvaluationInput" }, "output": { "target": "com.amazonaws.machinelearning#CreateEvaluationOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#IdempotentParameterMismatchException" }, { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set of observations associated to a DataSource. Like a DataSource \n for an MLModel, the DataSource for an Evaluation contains values for the Target Variable. The Evaluation compares the predicted result for each observation to the actual outcome and provides a \n summary so that you know how effective the MLModel functions on the test\n data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS.\n\n

\n

\n CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon Machine Learning (Amazon ML) immediately \n returns and sets the evaluation status to PENDING. After the Evaluation is created and ready for use, \n Amazon ML sets the status to COMPLETED. \n

\n

You can use the GetEvaluation operation to check progress of the evaluation during the creation operation.

" } }, "com.amazonaws.machinelearning#CreateEvaluationInput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the Evaluation.

", "smithy.api#required": {} } }, "EvaluationName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the Evaluation.

" } }, "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the MLModel to evaluate.

\n

The schema used in creating the MLModel must match the schema of the DataSource used in the Evaluation.

", "smithy.api#required": {} } }, "EvaluationDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the DataSource for the evaluation. The schema of the DataSource \n must match the schema used to create the MLModel.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#CreateEvaluationOutput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The user-supplied ID that uniquely identifies the Evaluation. This value should be identical to the value of the \n EvaluationId in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a CreateEvaluation operation, and is an acknowledgement that Amazon ML received the request.

\n

\n CreateEvaluation operation is asynchronous. You can poll for status updates\n by using the GetEvcaluation operation \n and checking the Status parameter.\n

" } }, "com.amazonaws.machinelearning#CreateMLModel": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateMLModelInput" }, "output": { "target": "com.amazonaws.machinelearning#CreateMLModelOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#IdempotentParameterMismatchException" }, { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Creates a new MLModel using the DataSource and the recipe as\n information sources.

\n

An MLModel is nearly immutable. Users can update only the\n MLModelName and the ScoreThreshold in an\n MLModel without creating a new MLModel.

\n

\n CreateMLModel is an asynchronous operation. In response to\n CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns\n and sets the MLModel status to PENDING. After the\n MLModel has been created and ready is for use, Amazon ML sets the\n status to COMPLETED.

\n

You can use the GetMLModel operation to check the progress of the\n MLModel during the creation operation.

\n\n

\n CreateMLModel requires a DataSource with computed statistics,\n which can be created by setting ComputeStatistics to true in\n CreateDataSourceFromRDS, CreateDataSourceFromS3, or\n CreateDataSourceFromRedshift operations.\n

" } }, "com.amazonaws.machinelearning#CreateMLModelInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the MLModel.

", "smithy.api#required": {} } }, "MLModelName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the MLModel.

" } }, "MLModelType": { "target": "com.amazonaws.machinelearning#MLModelType", "traits": { "smithy.api#documentation": "

The category of supervised learning that this MLModel will address. Choose from the following types:

\n \n

For more information, see the Amazon Machine Learning Developer Guide.

", "smithy.api#required": {} } }, "Parameters": { "target": "com.amazonaws.machinelearning#TrainingParameters", "traits": { "smithy.api#documentation": "

A list of the training parameters in the MLModel. The list is implemented as\n a map of key-value pairs.

\n

The following is the current set of training parameters:

\n " } }, "TrainingDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The DataSource that points to the training data.

", "smithy.api#required": {} } }, "Recipe": { "target": "com.amazonaws.machinelearning#Recipe", "traits": { "smithy.api#documentation": "

The data recipe for creating the MLModel. You must specify either the recipe\n or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.

" } }, "RecipeUri": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.

" } } } }, "com.amazonaws.machinelearning#CreateMLModelOutput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the \n MLModelId in the request.\n

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a CreateMLModel operation, and is an acknowledgement that Amazon ML received the request.

\n

The CreateMLModel operation is asynchronous. You can poll for status updates by using the \n GetMLModel operation and checking the Status parameter.\n

" } }, "com.amazonaws.machinelearning#CreateRealtimeEndpoint": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#CreateRealtimeEndpointInput" }, "output": { "target": "com.amazonaws.machinelearning#CreateRealtimeEndpointOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the MLModel; that is, the location to send real-time prediction requests for the specified MLModel.

" } }, "com.amazonaws.machinelearning#CreateRealtimeEndpointInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the MLModel during creation.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#CreateRealtimeEndpointOutput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the \n MLModelId in the request.

" } }, "RealtimeEndpointInfo": { "target": "com.amazonaws.machinelearning#RealtimeEndpointInfo", "traits": { "smithy.api#documentation": "

The endpoint information of the MLModel \n

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of an CreateRealtimeEndpoint operation.

\n

The result contains the MLModelId and the endpoint information for the MLModel.

\n

\n Note: The endpoint information includes the URI of the MLModel; that is, the location to send online prediction requests for the specified MLModel.

" } }, "com.amazonaws.machinelearning#DataRearrangement": { "type": "string" }, "com.amazonaws.machinelearning#DataSchema": { "type": "string", "traits": { "smithy.api#documentation": "

The schema of a DataSource. The DataSchema \n defines the structure of the observation data in the data file(s) \n referenced in the DataSource. The DataSource schema \n is expressed in JSON format.

\n

\n DataSchema is not required if you specify a DataSchemaUri\n

\n\n

{ \"version\": \"1.0\", \"recordAnnotationFieldName\": \"F1\", \"recordWeightFieldName\": \"F2\", \"targetFieldName\": \"F3\", \"dataFormat\": \"CSV\", \"dataFileContainsHeader\": true, \"variables\": [ { \"fieldName\": \"F1\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F2\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F3\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F4\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F5\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F6\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F7\", \"fieldType\": \"WEIGHTED_INT_SEQUENCE\" }, { \"fieldName\": \"F8\", \"fieldType\": \"WEIGHTED_STRING_SEQUENCE\" } ], \"excludedVariableNames\": [ \"F6\" ] }

", "smithy.api#length": { "min": 0, "max": 131071 } } }, "com.amazonaws.machinelearning#DataSource": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID that is assigned to the DataSource during creation.

" } }, "DataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location and name of the data in Amazon Simple Storage Service (Amazon S3) that is used by a DataSource.

" } }, "DataRearrangement": { "target": "com.amazonaws.machinelearning#DataRearrangement", "traits": { "smithy.api#documentation": "

A JSON string that represents the splitting and rearrangement requirement used when this DataSource\n was created.

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account from which the DataSource was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the DataSource was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the \n BatchPrediction. The time is expressed in epoch time.

" } }, "DataSizeInBytes": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The total number of observations contained in the data files that the DataSource references.

" } }, "NumberOfFiles": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The number of data files referenced by the DataSource.

" } }, "Name": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the DataSource.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The current status of the DataSource. This element can have one of the following values:

\n " } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about creating the DataSource.

" } }, "RedshiftMetadata": { "target": "com.amazonaws.machinelearning#RedshiftMetadata" }, "RDSMetadata": { "target": "com.amazonaws.machinelearning#RDSMetadata" }, "RoleARN": { "target": "com.amazonaws.machinelearning#RoleARN" }, "ComputeStatistics": { "target": "com.amazonaws.machinelearning#ComputeStatistics", "traits": { "smithy.api#documentation": "

\n The parameter is true if statistics need to be generated from the observation data.\n

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType" }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime" }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime" } }, "traits": { "smithy.api#documentation": "

Represents the output of the GetDataSource operation.

\n

The content consists of the detailed metadata and data file information and the current status of the DataSource.

" } }, "com.amazonaws.machinelearning#DataSourceFilterVariable": { "type": "string", "traits": { "smithy.api#documentation": "

A list of the variables to use in searching or filtering DataSource.

\n \n \n

\n Note: \n The variable names should match the variable names in the DataSource.

", "smithy.api#enum": [ { "value": "CreatedAt", "name": "CREATED_AT" }, { "value": "LastUpdatedAt", "name": "LAST_UPDATED_AT" }, { "value": "Status", "name": "STATUS" }, { "value": "Name", "name": "NAME" }, { "value": "DataLocationS3", "name": "DATA_URI" }, { "value": "IAMUser", "name": "IAM_USER" } ] } }, "com.amazonaws.machinelearning#DataSources": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#DataSource" } }, "com.amazonaws.machinelearning#DeleteBatchPrediction": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DeleteBatchPredictionInput" }, "output": { "target": "com.amazonaws.machinelearning#DeleteBatchPredictionOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Assigns the DELETED status to a BatchPrediction, rendering it unusable.

\n

After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction \n operation to verify that the status of the BatchPrediction changed to DELETED.

\n \n

\n Caution: The result of the DeleteBatchPrediction operation is irreversible.

" } }, "com.amazonaws.machinelearning#DeleteBatchPredictionInput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the BatchPrediction.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DeleteBatchPredictionOutput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the BatchPrediction. This value should be identical to the value of the BatchPredictionID in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a DeleteBatchPrediction operation.

\n

You can use the GetBatchPrediction operation and check the value of the Status parameter to see whether a \n BatchPrediction is marked as DELETED.

" } }, "com.amazonaws.machinelearning#DeleteDataSource": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DeleteDataSourceInput" }, "output": { "target": "com.amazonaws.machinelearning#DeleteDataSourceOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Assigns the DELETED status to a DataSource, rendering it unusable.

\n

After using the DeleteDataSource operation, you can use the GetDataSource operation to verify that the status of the DataSource changed to DELETED.

\n

\n Caution: The results of the DeleteDataSource operation are irreversible.

" } }, "com.amazonaws.machinelearning#DeleteDataSourceInput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the DataSource.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DeleteDataSourceOutput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the DataSource. This value should be identical to the value of the DataSourceID in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a DeleteDataSource operation.

" } }, "com.amazonaws.machinelearning#DeleteEvaluation": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DeleteEvaluationInput" }, "output": { "target": "com.amazonaws.machinelearning#DeleteEvaluationOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Assigns the DELETED status to an Evaluation, rendering it unusable.

\n\n

After invoking the DeleteEvaluation operation, you can use the\n GetEvaluation operation to verify that the status of the Evaluation changed to DELETED.

\n

\n Caution: The results of the DeleteEvaluation operation are irreversible.

" } }, "com.amazonaws.machinelearning#DeleteEvaluationInput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the Evaluation to delete.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DeleteEvaluationOutput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the Evaluation. This value should be identical to the value of the EvaluationId in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a DeleteEvaluation operation. The output indicates that Amazon Machine Learning (Amazon ML) received the request.

\n

You can use the GetEvaluation operation and check the value of the Status parameter to see whether an \n Evaluation is marked as DELETED.

" } }, "com.amazonaws.machinelearning#DeleteMLModel": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DeleteMLModelInput" }, "output": { "target": "com.amazonaws.machinelearning#DeleteMLModelOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Assigns the DELETED status to an MLModel, rendering it unusable.

\n

After using the DeleteMLModel operation, you can use the\n GetMLModel operation to verify that the status of the MLModel changed to DELETED.

\n \n

\n Caution: The result of the DeleteMLModel operation is irreversible.

" } }, "com.amazonaws.machinelearning#DeleteMLModelInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the MLModel.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DeleteMLModelOutput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelID in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a DeleteMLModel operation.

\n

You can use the GetMLModel operation and check the value of the Status parameter to see whether an \n MLModel is marked as DELETED.

" } }, "com.amazonaws.machinelearning#DeleteRealtimeEndpoint": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DeleteRealtimeEndpointInput" }, "output": { "target": "com.amazonaws.machinelearning#DeleteRealtimeEndpointOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Deletes a real time endpoint of an MLModel.

" } }, "com.amazonaws.machinelearning#DeleteRealtimeEndpointInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the MLModel during creation.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DeleteRealtimeEndpointOutput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the \n MLModelId in the request.

" } }, "RealtimeEndpointInfo": { "target": "com.amazonaws.machinelearning#RealtimeEndpointInfo", "traits": { "smithy.api#documentation": "

The endpoint information of the MLModel \n

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of an DeleteRealtimeEndpoint operation.

\n

The result contains the MLModelId and the endpoint information for the MLModel.

" } }, "com.amazonaws.machinelearning#DeleteTags": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DeleteTagsInput" }, "output": { "target": "com.amazonaws.machinelearning#DeleteTagsOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#InvalidTagException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.

\n\t\t

If you specify a tag that doesn't exist, Amazon ML ignores it.

" } }, "com.amazonaws.machinelearning#DeleteTagsInput": { "type": "structure", "members": { "TagKeys": { "target": "com.amazonaws.machinelearning#TagKeyList", "traits": { "smithy.api#documentation": "

One or more tags to delete.

", "smithy.api#required": {} } }, "ResourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the tagged ML object. For example, exampleModelId.

", "smithy.api#required": {} } }, "ResourceType": { "target": "com.amazonaws.machinelearning#TaggableResourceType", "traits": { "smithy.api#documentation": "

The type of the tagged ML object.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DeleteTagsOutput": { "type": "structure", "members": { "ResourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the ML object from which tags were deleted.

" } }, "ResourceType": { "target": "com.amazonaws.machinelearning#TaggableResourceType", "traits": { "smithy.api#documentation": "

The type of the ML object from which tags were deleted.

" } } }, "traits": { "smithy.api#documentation": "

Amazon ML returns the following elements.

" } }, "com.amazonaws.machinelearning#DescribeBatchPredictions": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DescribeBatchPredictionsInput" }, "output": { "target": "com.amazonaws.machinelearning#DescribeBatchPredictionsOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Returns a list of BatchPrediction operations that match the search criteria in the request.

", "smithy.api#paginated": { "inputToken": "NextToken", "outputToken": "NextToken", "items": "Results", "pageSize": "Limit" }, "smithy.waiters#waitable": { "BatchPredictionAvailable": { "acceptors": [ { "state": "success", "matcher": { "output": { "path": "Results[].Status", "expected": "COMPLETED", "comparator": "allStringEquals" } } }, { "state": "failure", "matcher": { "output": { "path": "Results[].Status", "expected": "FAILED", "comparator": "anyStringEquals" } } } ], "minDelay": 30 } } } }, "com.amazonaws.machinelearning#DescribeBatchPredictionsInput": { "type": "structure", "members": { "FilterVariable": { "target": "com.amazonaws.machinelearning#BatchPredictionFilterVariable", "traits": { "smithy.api#documentation": "

Use one of the following variables to filter a list of BatchPrediction:

\n " } }, "EQ": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The equal to operator. The BatchPrediction results will have \n FilterVariable values that exactly match the value specified with EQ.

" } }, "GT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than operator. The BatchPrediction results will \n have FilterVariable values that are greater than the value specified with GT.

" } }, "LT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than operator. The BatchPrediction results will \n have FilterVariable values that are less than the value specified with LT.

" } }, "GE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than or equal to operator. The BatchPrediction results will have FilterVariable values that are greater than or equal to the value specified with GE.\n

" } }, "LE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than or equal to operator. The BatchPrediction results will have FilterVariable values that are less than or equal to the value specified with LE.

" } }, "NE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The not equal to operator. The BatchPrediction results will have FilterVariable values not equal to the value specified with NE.

" } }, "Prefix": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

A string that is found at the beginning of a variable, such as Name or Id.

\n

For example, a Batch Prediction operation could have the Name \n 2014-09-09-HolidayGiftMailer. To search for \n this BatchPrediction, select Name for the FilterVariable and any of the following strings for the \n Prefix:\n

\n \n " } }, "SortOrder": { "target": "com.amazonaws.machinelearning#SortOrder", "traits": { "smithy.api#documentation": "

A two-value parameter that determines the sequence of the resulting list of MLModels.

\n \n

Results are sorted by FilterVariable.

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

An ID of the page in the paginated results.

" } }, "Limit": { "target": "com.amazonaws.machinelearning#PageLimit", "traits": { "smithy.api#documentation": "

The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

" } } } }, "com.amazonaws.machinelearning#DescribeBatchPredictionsOutput": { "type": "structure", "members": { "Results": { "target": "com.amazonaws.machinelearning#BatchPredictions", "traits": { "smithy.api#documentation": "

A list of BatchPrediction objects that meet the search criteria.\n

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

The ID of the next page in the paginated results that indicates at least one more page follows.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a DescribeBatchPredictions operation. The content is essentially a list of BatchPredictions.

" } }, "com.amazonaws.machinelearning#DescribeDataSources": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DescribeDataSourcesInput" }, "output": { "target": "com.amazonaws.machinelearning#DescribeDataSourcesOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Returns a list of DataSource that match the search criteria in the request.

", "smithy.api#paginated": { "inputToken": "NextToken", "outputToken": "NextToken", "items": "Results", "pageSize": "Limit" }, "smithy.waiters#waitable": { "DataSourceAvailable": { "acceptors": [ { "state": "success", "matcher": { "output": { "path": "Results[].Status", "expected": "COMPLETED", "comparator": "allStringEquals" } } }, { "state": "failure", "matcher": { "output": { "path": "Results[].Status", "expected": "FAILED", "comparator": "anyStringEquals" } } } ], "minDelay": 30 } } } }, "com.amazonaws.machinelearning#DescribeDataSourcesInput": { "type": "structure", "members": { "FilterVariable": { "target": "com.amazonaws.machinelearning#DataSourceFilterVariable", "traits": { "smithy.api#documentation": "

Use one of the following variables to filter a list of DataSource:

\n " } }, "EQ": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The equal to operator. The DataSource results will have \n FilterVariable values that exactly match the value specified with EQ.

" } }, "GT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than operator. The DataSource results will \n have FilterVariable values that are greater than the value specified with GT.

" } }, "LT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than operator. The DataSource results will \n have FilterVariable values that are less than the value specified with LT.

" } }, "GE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than or equal to operator. The DataSource results will have FilterVariable values that are greater than or equal to the value specified with GE.\n

" } }, "LE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than or equal to operator. The DataSource results will have FilterVariable values that are less than or equal to the value specified with LE.

" } }, "NE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The not equal to operator. The DataSource results will have FilterVariable values not equal to the value specified with NE.

" } }, "Prefix": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

A string that is found at the beginning of a variable, such as Name or Id.

\n

For example, a DataSource could have the Name \n 2014-09-09-HolidayGiftMailer. To search for \n this DataSource, select Name for the FilterVariable and any of the following strings for the \n Prefix: \n

\n \n " } }, "SortOrder": { "target": "com.amazonaws.machinelearning#SortOrder", "traits": { "smithy.api#documentation": "

A two-value parameter that determines the sequence of the resulting list of DataSource.

\n \n

Results are sorted by FilterVariable.

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

The ID of the page in the paginated results.

" } }, "Limit": { "target": "com.amazonaws.machinelearning#PageLimit", "traits": { "smithy.api#documentation": "

The maximum number of DataSource to include in the result.

" } } } }, "com.amazonaws.machinelearning#DescribeDataSourcesOutput": { "type": "structure", "members": { "Results": { "target": "com.amazonaws.machinelearning#DataSources", "traits": { "smithy.api#documentation": "

A list of DataSource that meet the search criteria.\n

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

An ID of the next page in the paginated results that indicates at least one more page follows.

" } } }, "traits": { "smithy.api#documentation": "

Represents the query results from a DescribeDataSources operation. The content is essentially a list of DataSource.

" } }, "com.amazonaws.machinelearning#DescribeEvaluations": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DescribeEvaluationsInput" }, "output": { "target": "com.amazonaws.machinelearning#DescribeEvaluationsOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Returns a list of DescribeEvaluations that match the search criteria in the request.

", "smithy.api#paginated": { "inputToken": "NextToken", "outputToken": "NextToken", "items": "Results", "pageSize": "Limit" }, "smithy.waiters#waitable": { "EvaluationAvailable": { "acceptors": [ { "state": "success", "matcher": { "output": { "path": "Results[].Status", "expected": "COMPLETED", "comparator": "allStringEquals" } } }, { "state": "failure", "matcher": { "output": { "path": "Results[].Status", "expected": "FAILED", "comparator": "anyStringEquals" } } } ], "minDelay": 30 } } } }, "com.amazonaws.machinelearning#DescribeEvaluationsInput": { "type": "structure", "members": { "FilterVariable": { "target": "com.amazonaws.machinelearning#EvaluationFilterVariable", "traits": { "smithy.api#documentation": "

Use one of the following variable to filter a list of Evaluation objects:

\n " } }, "EQ": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The equal to operator. The Evaluation results will have \n FilterVariable values that exactly match the value specified with EQ.

" } }, "GT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than operator. The Evaluation results will \n have FilterVariable values that are greater than the value specified with GT.

" } }, "LT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than operator. The Evaluation results will \n have FilterVariable values that are less than the value specified with LT.

" } }, "GE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than or equal to operator. The Evaluation results will have FilterVariable values that are greater than or equal to the value specified with GE.\n

" } }, "LE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than or equal to operator. The Evaluation results will have FilterVariable values that are less than or equal to the value specified with LE.

" } }, "NE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The not equal to operator. The Evaluation results will have FilterVariable values not equal to the value specified with NE.

" } }, "Prefix": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

A string that is found at the beginning of a variable, such as Name or Id.

\n

For example, an Evaluation could have the Name \n 2014-09-09-HolidayGiftMailer. To search for \n this Evaluation, select Name for the FilterVariable and any of the following strings for the \n Prefix: \n

\n \n " } }, "SortOrder": { "target": "com.amazonaws.machinelearning#SortOrder", "traits": { "smithy.api#documentation": "

A two-value parameter that determines the sequence of the resulting list of Evaluation.

\n \n

Results are sorted by FilterVariable.

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

The ID of the page in the paginated results.

" } }, "Limit": { "target": "com.amazonaws.machinelearning#PageLimit", "traits": { "smithy.api#documentation": "

The maximum number of Evaluation to include in the result.

" } } } }, "com.amazonaws.machinelearning#DescribeEvaluationsOutput": { "type": "structure", "members": { "Results": { "target": "com.amazonaws.machinelearning#Evaluations", "traits": { "smithy.api#documentation": "

A list of Evaluation that meet the search criteria.\n

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

The ID of the next page in the paginated results that indicates at least one more page follows.

" } } }, "traits": { "smithy.api#documentation": "

Represents the query results from a DescribeEvaluations operation. The content is essentially a list of Evaluation.

" } }, "com.amazonaws.machinelearning#DescribeMLModels": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DescribeMLModelsInput" }, "output": { "target": "com.amazonaws.machinelearning#DescribeMLModelsOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" } ], "traits": { "smithy.api#documentation": "

Returns a list of MLModel that match the search criteria in the request.

", "smithy.api#paginated": { "inputToken": "NextToken", "outputToken": "NextToken", "items": "Results", "pageSize": "Limit" }, "smithy.waiters#waitable": { "MLModelAvailable": { "acceptors": [ { "state": "success", "matcher": { "output": { "path": "Results[].Status", "expected": "COMPLETED", "comparator": "allStringEquals" } } }, { "state": "failure", "matcher": { "output": { "path": "Results[].Status", "expected": "FAILED", "comparator": "anyStringEquals" } } } ], "minDelay": 30 } } } }, "com.amazonaws.machinelearning#DescribeMLModelsInput": { "type": "structure", "members": { "FilterVariable": { "target": "com.amazonaws.machinelearning#MLModelFilterVariable", "traits": { "smithy.api#documentation": "

Use one of the following variables to filter a list of MLModel:

\n " } }, "EQ": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The equal to operator. The MLModel results will have \n FilterVariable values that exactly match the value specified with EQ.

" } }, "GT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than operator. The MLModel results will \n have FilterVariable values that are greater than the value specified with GT.

" } }, "LT": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than operator. The MLModel results will \n have FilterVariable values that are less than the value specified with LT.

" } }, "GE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The greater than or equal to operator. The MLModel results will have FilterVariable values that are greater than or equal to the value specified with GE.\n

" } }, "LE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The less than or equal to operator. The MLModel results will have FilterVariable values that are less than or equal to the value specified with LE.

" } }, "NE": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

The not equal to operator. The MLModel results will have FilterVariable values not equal to the value specified with NE.

" } }, "Prefix": { "target": "com.amazonaws.machinelearning#ComparatorValue", "traits": { "smithy.api#documentation": "

A string that is found at the beginning of a variable, such as Name or Id.

\n

For example, an MLModel could have the Name \n 2014-09-09-HolidayGiftMailer. To search for \n this MLModel, select Name for the FilterVariable and any of the following strings for the \n Prefix: \n

\n \n " } }, "SortOrder": { "target": "com.amazonaws.machinelearning#SortOrder", "traits": { "smithy.api#documentation": "

A two-value parameter that determines the sequence of the resulting list of MLModel.

\n \n

Results are sorted by FilterVariable.

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

The ID of the page in the paginated results.

" } }, "Limit": { "target": "com.amazonaws.machinelearning#PageLimit", "traits": { "smithy.api#documentation": "

The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

" } } } }, "com.amazonaws.machinelearning#DescribeMLModelsOutput": { "type": "structure", "members": { "Results": { "target": "com.amazonaws.machinelearning#MLModels", "traits": { "smithy.api#documentation": "

A list of MLModel that meet the search criteria.

" } }, "NextToken": { "target": "com.amazonaws.machinelearning#StringType", "traits": { "smithy.api#documentation": "

The ID of the next page in the paginated results that indicates at least one more page follows.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a DescribeMLModels operation. The content is essentially a list of MLModel.

" } }, "com.amazonaws.machinelearning#DescribeTags": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#DescribeTagsInput" }, "output": { "target": "com.amazonaws.machinelearning#DescribeTagsOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Describes one or more of the tags for your Amazon ML object.

" } }, "com.amazonaws.machinelearning#DescribeTagsInput": { "type": "structure", "members": { "ResourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the ML object. For example, exampleModelId.

", "smithy.api#required": {} } }, "ResourceType": { "target": "com.amazonaws.machinelearning#TaggableResourceType", "traits": { "smithy.api#documentation": "

The type of the ML object.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#DescribeTagsOutput": { "type": "structure", "members": { "ResourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the tagged ML object.

" } }, "ResourceType": { "target": "com.amazonaws.machinelearning#TaggableResourceType", "traits": { "smithy.api#documentation": "

The type of the tagged ML object.

" } }, "Tags": { "target": "com.amazonaws.machinelearning#TagList", "traits": { "smithy.api#documentation": "

A list of tags associated with the ML object.

" } } }, "traits": { "smithy.api#documentation": "

Amazon ML returns the following elements.

" } }, "com.amazonaws.machinelearning#DetailsAttributes": { "type": "string", "traits": { "smithy.api#documentation": "

Contains the key values of DetailsMap:

\n ", "smithy.api#enum": [ { "value": "PredictiveModelType", "name": "PREDICTIVE_MODEL_TYPE" }, { "value": "Algorithm", "name": "ALGORITHM" } ] } }, "com.amazonaws.machinelearning#DetailsMap": { "type": "map", "key": { "target": "com.amazonaws.machinelearning#DetailsAttributes" }, "value": { "target": "com.amazonaws.machinelearning#DetailsValue" }, "traits": { "smithy.api#documentation": "

Provides any additional details regarding the prediction.

" } }, "com.amazonaws.machinelearning#DetailsValue": { "type": "string", "traits": { "smithy.api#length": { "min": 1 } } }, "com.amazonaws.machinelearning#EDPPipelineId": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 1024 } } }, "com.amazonaws.machinelearning#EDPResourceRole": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 64 } } }, "com.amazonaws.machinelearning#EDPSecurityGroupId": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 255 } } }, "com.amazonaws.machinelearning#EDPSecurityGroupIds": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#EDPSecurityGroupId" } }, "com.amazonaws.machinelearning#EDPServiceRole": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 64 } } }, "com.amazonaws.machinelearning#EDPSubnetId": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 255 } } }, "com.amazonaws.machinelearning#EntityId": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 64 }, "smithy.api#pattern": "[a-zA-Z0-9_.-]+" } }, "com.amazonaws.machinelearning#EntityName": { "type": "string", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the Amazon ML resource.

", "smithy.api#length": { "min": 0, "max": 1024 }, "smithy.api#pattern": ".*\\S.*|^$" } }, "com.amazonaws.machinelearning#EntityStatus": { "type": "string", "traits": { "smithy.api#documentation": "

Object status with the following possible values:

\n ", "smithy.api#enum": [ { "value": "PENDING", "name": "PENDING" }, { "value": "INPROGRESS", "name": "INPROGRESS" }, { "value": "FAILED", "name": "FAILED" }, { "value": "COMPLETED", "name": "COMPLETED" }, { "value": "DELETED", "name": "DELETED" } ] } }, "com.amazonaws.machinelearning#EpochTime": { "type": "timestamp", "traits": { "smithy.api#documentation": "

A timestamp represented in epoch time.

" } }, "com.amazonaws.machinelearning#ErrorCode": { "type": "integer" }, "com.amazonaws.machinelearning#ErrorMessage": { "type": "string", "traits": { "smithy.api#length": { "min": 0, "max": 2048 } } }, "com.amazonaws.machinelearning#Evaluation": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID that is assigned to the Evaluation at creation.

" } }, "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the MLModel that is the focus of the evaluation.

" } }, "EvaluationDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the DataSource that is used to evaluate the MLModel.

" } }, "InputDataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location and name of the data in Amazon Simple Storage Server (Amazon S3) that is used in the evaluation.

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the Evaluation was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the Evaluation. The time is expressed in epoch time.

" } }, "Name": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the Evaluation.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The status of the evaluation. This element can have one of the following values:

\n " } }, "PerformanceMetrics": { "target": "com.amazonaws.machinelearning#PerformanceMetrics", "traits": { "smithy.api#documentation": "

Measurements of how well the MLModel performed, using observations referenced\n by the DataSource. One of the following metrics is returned, based on the type of the MLModel: \n

\n \n

\n For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.\n

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about evaluating the MLModel.

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType" }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime" }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime" } }, "traits": { "smithy.api#documentation": "

Represents the output of GetEvaluation operation.

\n

The content consists of the detailed metadata and data file information and the current status of the \n Evaluation.

" } }, "com.amazonaws.machinelearning#EvaluationFilterVariable": { "type": "string", "traits": { "smithy.api#documentation": "

A list of the variables to use in searching or filtering Evaluation.

\n ", "smithy.api#enum": [ { "value": "CreatedAt", "name": "CREATED_AT" }, { "value": "LastUpdatedAt", "name": "LAST_UPDATED_AT" }, { "value": "Status", "name": "STATUS" }, { "value": "Name", "name": "NAME" }, { "value": "IAMUser", "name": "IAM_USER" }, { "value": "MLModelId", "name": "ML_MODEL_ID" }, { "value": "DataSourceId", "name": "DATASOURCE_ID" }, { "value": "DataURI", "name": "DATA_URI" } ] } }, "com.amazonaws.machinelearning#Evaluations": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#Evaluation" } }, "com.amazonaws.machinelearning#GetBatchPrediction": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#GetBatchPredictionInput" }, "output": { "target": "com.amazonaws.machinelearning#GetBatchPredictionOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Returns a BatchPrediction that includes detailed metadata, status, and data file information for a\n Batch Prediction request.

" } }, "com.amazonaws.machinelearning#GetBatchPredictionInput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

An ID assigned to the BatchPrediction at creation.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#GetBatchPredictionOutput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

An ID assigned to the BatchPrediction at creation. This value should be identical to the value of the BatchPredictionID \n in the request.

" } }, "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the MLModel that generated predictions for the BatchPrediction request.

" } }, "BatchPredictionDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the DataSource that was used to create the BatchPrediction.\n

" } }, "InputDataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account that invoked the BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time when the BatchPrediction was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to BatchPrediction. The time is expressed in epoch time.

" } }, "Name": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the BatchPrediction.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The status of the BatchPrediction, which can be one of the following values:

\n " } }, "OutputUri": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of an Amazon S3 bucket or directory to receive the operation results.

" } }, "LogUri": { "target": "com.amazonaws.machinelearning#PresignedS3Url", "traits": { "smithy.api#documentation": "

A link to the file that contains logs of the CreateBatchPrediction operation.

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about processing the batch prediction request.

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the BatchPrediction, normalized and scaled on computation resources. ComputeTime is only available if the BatchPrediction is in the COMPLETED state.

" } }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the BatchPrediction as COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction is in the COMPLETED or FAILED state.

" } }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the BatchPrediction as INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING state.

" } }, "TotalRecordCount": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The number of total records that Amazon Machine Learning saw while processing the BatchPrediction.

" } }, "InvalidRecordCount": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The number of invalid records that Amazon Machine Learning saw while processing the BatchPrediction.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a GetBatchPrediction operation and describes a BatchPrediction.

" } }, "com.amazonaws.machinelearning#GetDataSource": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#GetDataSourceInput" }, "output": { "target": "com.amazonaws.machinelearning#GetDataSourceOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Returns a DataSource that includes metadata and data file information, as well as the current status of the DataSource.

\n

\n GetDataSource provides results in normal or verbose format. The verbose format \n adds the schema description and the list of files pointed to by the DataSource to the normal format.

" } }, "com.amazonaws.machinelearning#GetDataSourceInput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the DataSource at creation.

", "smithy.api#required": {} } }, "Verbose": { "target": "com.amazonaws.machinelearning#Verbose", "traits": { "smithy.api#documentation": "

Specifies whether the GetDataSource operation should return DataSourceSchema.

\n

If true, DataSourceSchema is returned.

\n

If false, DataSourceSchema is not returned.

" } } } }, "com.amazonaws.machinelearning#GetDataSourceOutput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the DataSource at creation. This value should be identical to the value of the DataSourceId in the request.

" } }, "DataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

" } }, "DataRearrangement": { "target": "com.amazonaws.machinelearning#DataRearrangement", "traits": { "smithy.api#documentation": "

A JSON string that represents the splitting and rearrangement requirement used when this DataSource\n was created.

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account from which the DataSource was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the DataSource was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the DataSource. The time is expressed in epoch time.

" } }, "DataSizeInBytes": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The total size of observations in the data files.

" } }, "NumberOfFiles": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The number of data files referenced by the DataSource.

" } }, "Name": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the DataSource.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The current status of the DataSource. This element can have one of the following values:

\n " } }, "LogUri": { "target": "com.amazonaws.machinelearning#PresignedS3Url", "traits": { "smithy.api#documentation": "

A link to the file containing logs of CreateDataSourceFrom* operations.

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

The user-supplied description of the most recent details about creating the DataSource.

" } }, "RedshiftMetadata": { "target": "com.amazonaws.machinelearning#RedshiftMetadata" }, "RDSMetadata": { "target": "com.amazonaws.machinelearning#RDSMetadata" }, "RoleARN": { "target": "com.amazonaws.machinelearning#RoleARN" }, "ComputeStatistics": { "target": "com.amazonaws.machinelearning#ComputeStatistics", "traits": { "smithy.api#documentation": "

\n The parameter is true if statistics need to be generated from the observation data.\n

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the DataSource, normalized and scaled on computation resources. ComputeTime is only available if the DataSource is in the COMPLETED state and the ComputeStatistics is set to true.

" } }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED or FAILED state.

" } }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS. StartedAt isn't available if the DataSource is in the PENDING state.

" } }, "DataSourceSchema": { "target": "com.amazonaws.machinelearning#DataSchema", "traits": { "smithy.api#documentation": "

The schema used by all of the data files of this DataSource.

\n

\n Note: This parameter is provided as part of the verbose format.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a GetDataSource operation and describes a DataSource.

" } }, "com.amazonaws.machinelearning#GetEvaluation": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#GetEvaluationInput" }, "output": { "target": "com.amazonaws.machinelearning#GetEvaluationOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Returns an Evaluation that includes metadata as well as the current status of the Evaluation.

" } }, "com.amazonaws.machinelearning#GetEvaluationInput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded and cataloged. The ID provides the means to access the information.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#GetEvaluationOutput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The evaluation ID which is same as the EvaluationId in the request.

" } }, "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the MLModel that was the focus of the evaluation.

" } }, "EvaluationDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The DataSource used for this evaluation.

" } }, "InputDataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the Evaluation was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the Evaluation. The time is expressed in epoch time.

" } }, "Name": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the Evaluation.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The status of the evaluation. This element can have one of the following values:

\n " } }, "PerformanceMetrics": { "target": "com.amazonaws.machinelearning#PerformanceMetrics", "traits": { "smithy.api#documentation": "

Measurements of how well the MLModel performed using observations referenced by the DataSource. One of the following metric is returned based on the type of the MLModel: \n

\n \n

\n For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.\n

" } }, "LogUri": { "target": "com.amazonaws.machinelearning#PresignedS3Url", "traits": { "smithy.api#documentation": "

A link to the file that contains logs of the CreateEvaluation operation.

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about evaluating the MLModel.

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the Evaluation, normalized and scaled on computation resources. ComputeTime is only available if the Evaluation is in the COMPLETED state.

" } }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED or FAILED state.

" } }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS. StartedAt isn't available if the Evaluation is in the PENDING state.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a GetEvaluation operation and describes an Evaluation.

" } }, "com.amazonaws.machinelearning#GetMLModel": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#GetMLModelInput" }, "output": { "target": "com.amazonaws.machinelearning#GetMLModelOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Returns an MLModel that includes detailed metadata, data source information, and the current status of the MLModel.

\n

\n GetMLModel provides results in normal or verbose format.

" } }, "com.amazonaws.machinelearning#GetMLModelInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the MLModel at creation.

", "smithy.api#required": {} } }, "Verbose": { "target": "com.amazonaws.machinelearning#Verbose", "traits": { "smithy.api#documentation": "

Specifies whether the GetMLModel operation should return Recipe.

\n

If true, Recipe is returned.

\n

If false, Recipe is not returned.

" } } } }, "com.amazonaws.machinelearning#GetMLModelOutput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The MLModel ID, \n which is same as the MLModelId in the request.

" } }, "TrainingDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the training DataSource.

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the MLModel was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the MLModel. The time is expressed in epoch time.

" } }, "Name": { "target": "com.amazonaws.machinelearning#MLModelName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the MLModel.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The current status of the MLModel. This element can have one of the following values:

\n " } }, "SizeInBytes": { "target": "com.amazonaws.machinelearning#LongType" }, "EndpointInfo": { "target": "com.amazonaws.machinelearning#RealtimeEndpointInfo", "traits": { "smithy.api#documentation": "

The current endpoint of the MLModel\n

" } }, "TrainingParameters": { "target": "com.amazonaws.machinelearning#TrainingParameters", "traits": { "smithy.api#documentation": "

A list of the training parameters in the MLModel. The list is implemented as\n a map of key-value pairs.

\n

The following is the current set of training parameters:

\n " } }, "InputDataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

" } }, "MLModelType": { "target": "com.amazonaws.machinelearning#MLModelType", "traits": { "smithy.api#documentation": "

Identifies the MLModel category. The following are the available types:

\n " } }, "ScoreThreshold": { "target": "com.amazonaws.machinelearning#ScoreThreshold", "traits": { "smithy.api#documentation": "

The scoring threshold is used in binary classification MLModel\n models. It marks the boundary between a positive prediction and a\n negative prediction.

\n

Output values greater than or equal to the threshold receive a positive result from the MLModel, such as \n true. Output values less than the threshold receive a negative response from the MLModel, \n such as false.

" } }, "ScoreThresholdLastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.

" } }, "LogUri": { "target": "com.amazonaws.machinelearning#PresignedS3Url", "traits": { "smithy.api#documentation": "

A link to the file that contains logs of the CreateMLModel operation.

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about accessing the MLModel.

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType", "traits": { "smithy.api#documentation": "

The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the MLModel, normalized and scaled on computation resources. ComputeTime is only available if the MLModel is in the COMPLETED state.

" } }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED or FAILED state.

" } }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS. StartedAt isn't available if the MLModel is in the PENDING state.

" } }, "Recipe": { "target": "com.amazonaws.machinelearning#Recipe", "traits": { "smithy.api#documentation": "

The recipe to use when training the MLModel. The Recipe\n provides detailed information about the observation data to use during training, and\n manipulations to perform on the observation data during training.

\n

\n Note: This parameter is provided as part of the verbose format.

" } }, "Schema": { "target": "com.amazonaws.machinelearning#DataSchema", "traits": { "smithy.api#documentation": "

The schema used by all of the data files referenced by the DataSource.

\n

\n Note: This parameter is provided as part of the verbose format.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of a GetMLModel operation, and provides detailed information about a MLModel.

" } }, "com.amazonaws.machinelearning#IdempotentParameterMismatchException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" }, "code": { "target": "com.amazonaws.machinelearning#ErrorCode" } }, "traits": { "smithy.api#documentation": "

A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.

", "smithy.api#error": "client", "smithy.api#httpError": 400 } }, "com.amazonaws.machinelearning#IntegerType": { "type": "integer", "traits": { "smithy.api#documentation": "

Integer type that is a 32-bit signed number.

" } }, "com.amazonaws.machinelearning#InternalServerException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" }, "code": { "target": "com.amazonaws.machinelearning#ErrorCode" } }, "traits": { "smithy.api#documentation": "

An error on the server occurred when trying to process a request.

", "smithy.api#error": "server", "smithy.api#httpError": 500 } }, "com.amazonaws.machinelearning#InvalidInputException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" }, "code": { "target": "com.amazonaws.machinelearning#ErrorCode" } }, "traits": { "smithy.api#documentation": "

An error on the client occurred. Typically, the cause is an invalid input value.

", "smithy.api#error": "client", "smithy.api#httpError": 400 } }, "com.amazonaws.machinelearning#InvalidTagException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" } }, "traits": { "smithy.api#error": "client" } }, "com.amazonaws.machinelearning#Label": { "type": "string", "traits": { "smithy.api#length": { "min": 1 } } }, "com.amazonaws.machinelearning#LimitExceededException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" }, "code": { "target": "com.amazonaws.machinelearning#ErrorCode" } }, "traits": { "smithy.api#documentation": "

The subscriber exceeded the maximum number of operations. This exception can occur when listing objects such as DataSource.

", "smithy.api#error": "client", "smithy.api#httpError": 417 } }, "com.amazonaws.machinelearning#LongType": { "type": "long", "traits": { "smithy.api#box": {}, "smithy.api#documentation": "

Long integer type that is a 64-bit signed number.

" } }, "com.amazonaws.machinelearning#MLModel": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the MLModel at creation.

" } }, "TrainingDataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.

" } }, "CreatedByIamUser": { "target": "com.amazonaws.machinelearning#AwsUserArn", "traits": { "smithy.api#documentation": "

The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the MLModel was created. The time is expressed in epoch time.

" } }, "LastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the MLModel. The time is expressed in epoch time.

" } }, "Name": { "target": "com.amazonaws.machinelearning#MLModelName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the MLModel.

" } }, "Status": { "target": "com.amazonaws.machinelearning#EntityStatus", "traits": { "smithy.api#documentation": "

The current status of an MLModel. This element can have one of the following values:

\n " } }, "SizeInBytes": { "target": "com.amazonaws.machinelearning#LongType" }, "EndpointInfo": { "target": "com.amazonaws.machinelearning#RealtimeEndpointInfo", "traits": { "smithy.api#documentation": "

The current endpoint of the MLModel.

" } }, "TrainingParameters": { "target": "com.amazonaws.machinelearning#TrainingParameters", "traits": { "smithy.api#documentation": "

A list of the training parameters in the MLModel. The list is implemented as\n a map of key-value pairs.

\n

The following is the current set of training parameters:

\n " } }, "InputDataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

" } }, "Algorithm": { "target": "com.amazonaws.machinelearning#Algorithm", "traits": { "smithy.api#documentation": "

The algorithm used to train the MLModel. The following algorithm is supported:

\n " } }, "MLModelType": { "target": "com.amazonaws.machinelearning#MLModelType", "traits": { "smithy.api#documentation": "

Identifies the MLModel category. The following are the available types:

\n " } }, "ScoreThreshold": { "target": "com.amazonaws.machinelearning#ScoreThreshold" }, "ScoreThresholdLastUpdatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.

" } }, "Message": { "target": "com.amazonaws.machinelearning#Message", "traits": { "smithy.api#documentation": "

A description of the most recent details about accessing the MLModel.

" } }, "ComputeTime": { "target": "com.amazonaws.machinelearning#LongType" }, "FinishedAt": { "target": "com.amazonaws.machinelearning#EpochTime" }, "StartedAt": { "target": "com.amazonaws.machinelearning#EpochTime" } }, "traits": { "smithy.api#documentation": "

Represents the output of a GetMLModel operation.

\n

The content consists of the detailed metadata and the current status of the MLModel.

" } }, "com.amazonaws.machinelearning#MLModelFilterVariable": { "type": "string", "traits": { "smithy.api#enum": [ { "value": "CreatedAt", "name": "CREATED_AT" }, { "value": "LastUpdatedAt", "name": "LAST_UPDATED_AT" }, { "value": "Status", "name": "STATUS" }, { "value": "Name", "name": "NAME" }, { "value": "IAMUser", "name": "IAM_USER" }, { "value": "TrainingDataSourceId", "name": "TRAINING_DATASOURCE_ID" }, { "value": "RealtimeEndpointStatus", "name": "REAL_TIME_ENDPOINT_STATUS" }, { "value": "MLModelType", "name": "ML_MODEL_TYPE" }, { "value": "Algorithm", "name": "ALGORITHM" }, { "value": "TrainingDataURI", "name": "TRAINING_DATA_URI" } ] } }, "com.amazonaws.machinelearning#MLModelName": { "type": "string", "traits": { "smithy.api#length": { "min": 0, "max": 1024 } } }, "com.amazonaws.machinelearning#MLModelType": { "type": "string", "traits": { "smithy.api#enum": [ { "value": "REGRESSION", "name": "REGRESSION" }, { "value": "BINARY", "name": "BINARY" }, { "value": "MULTICLASS", "name": "MULTICLASS" } ] } }, "com.amazonaws.machinelearning#MLModels": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#MLModel" } }, "com.amazonaws.machinelearning#Message": { "type": "string", "traits": { "smithy.api#documentation": "

Description of the most recent details about an object.

", "smithy.api#length": { "min": 0, "max": 10240 } } }, "com.amazonaws.machinelearning#PageLimit": { "type": "integer", "traits": { "smithy.api#box": {}, "smithy.api#range": { "min": 1, "max": 100 } } }, "com.amazonaws.machinelearning#PerformanceMetrics": { "type": "structure", "members": { "Properties": { "target": "com.amazonaws.machinelearning#PerformanceMetricsProperties" } }, "traits": { "smithy.api#documentation": "

Measurements of how well the MLModel performed on known observations. One of the following metrics is returned, based on the type of the MLModel: \n

\n \n

\n For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.\n

" } }, "com.amazonaws.machinelearning#PerformanceMetricsProperties": { "type": "map", "key": { "target": "com.amazonaws.machinelearning#PerformanceMetricsPropertyKey" }, "value": { "target": "com.amazonaws.machinelearning#PerformanceMetricsPropertyValue" } }, "com.amazonaws.machinelearning#PerformanceMetricsPropertyKey": { "type": "string" }, "com.amazonaws.machinelearning#PerformanceMetricsPropertyValue": { "type": "string" }, "com.amazonaws.machinelearning#Predict": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#PredictInput" }, "output": { "target": "com.amazonaws.machinelearning#PredictOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#LimitExceededException" }, { "target": "com.amazonaws.machinelearning#PredictorNotMountedException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Generates a prediction for the observation using the specified ML Model.

\n

\n Note: Not all response parameters will be populated. Whether a\n response parameter is populated depends on the type of model requested.

" } }, "com.amazonaws.machinelearning#PredictInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

A unique identifier of the MLModel.

", "smithy.api#required": {} } }, "Record": { "target": "com.amazonaws.machinelearning#Record", "traits": { "smithy.api#required": {} } }, "PredictEndpoint": { "target": "com.amazonaws.machinelearning#VipURL", "traits": { "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#PredictOutput": { "type": "structure", "members": { "Prediction": { "target": "com.amazonaws.machinelearning#Prediction" } } }, "com.amazonaws.machinelearning#Prediction": { "type": "structure", "members": { "predictedLabel": { "target": "com.amazonaws.machinelearning#Label", "traits": { "smithy.api#documentation": "

The prediction label for either a BINARY or MULTICLASS \n MLModel.

" } }, "predictedValue": { "target": "com.amazonaws.machinelearning#floatLabel", "traits": { "smithy.api#documentation": "

The prediction value for REGRESSION \n MLModel.

" } }, "predictedScores": { "target": "com.amazonaws.machinelearning#ScoreValuePerLabelMap" }, "details": { "target": "com.amazonaws.machinelearning#DetailsMap" } }, "traits": { "smithy.api#documentation": "

The output from a Predict operation:

\n\t\t\n\t\t " } }, "com.amazonaws.machinelearning#PredictorNotMountedException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" } }, "traits": { "smithy.api#documentation": "

The exception is thrown when a predict request is made to an unmounted MLModel.

", "smithy.api#error": "client", "smithy.api#httpError": 400 } }, "com.amazonaws.machinelearning#PresignedS3Url": { "type": "string" }, "com.amazonaws.machinelearning#RDSDataSpec": { "type": "structure", "members": { "DatabaseInformation": { "target": "com.amazonaws.machinelearning#RDSDatabase", "traits": { "smithy.api#documentation": "

Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.

", "smithy.api#required": {} } }, "SelectSqlQuery": { "target": "com.amazonaws.machinelearning#RDSSelectSqlQuery", "traits": { "smithy.api#documentation": "

The query that is used to retrieve the observation data for the DataSource.

", "smithy.api#required": {} } }, "DatabaseCredentials": { "target": "com.amazonaws.machinelearning#RDSDatabaseCredentials", "traits": { "smithy.api#documentation": "

The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.

", "smithy.api#required": {} } }, "S3StagingLocation": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.

", "smithy.api#required": {} } }, "DataRearrangement": { "target": "com.amazonaws.machinelearning#DataRearrangement", "traits": { "smithy.api#documentation": "

A JSON string that represents the splitting and rearrangement \n processing to be applied to a DataSource. If the DataRearrangement \n parameter is not provided, all of the input data is used to create the Datasource.

\n\n

There are multiple parameters that control what data is used to create a datasource:

\n " } }, "DataSchema": { "target": "com.amazonaws.machinelearning#DataSchema", "traits": { "smithy.api#documentation": "

A JSON string that represents the schema for an Amazon RDS\n DataSource. The DataSchema\n defines the structure of the observation data in the data file(s)\n referenced in the DataSource.

\n

A DataSchema is not required if you specify a \n DataSchemaUri\n

\n

Define your DataSchema as a series of key-value pairs. attributes\n and excludedVariableNames have an array of key-value pairs\n for their value. Use the following format to define your DataSchema.

\n

{ \"version\": \"1.0\",

\n

\"recordAnnotationFieldName\": \"F1\",

\n

\"recordWeightFieldName\": \"F2\",

\n

\"targetFieldName\": \"F3\",

\n

\"dataFormat\": \"CSV\",

\n

\"dataFileContainsHeader\": true,

\n

\"attributes\": [

\n

{ \"fieldName\": \"F1\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F2\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F3\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F4\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F5\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F6\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F7\", \"fieldType\": \"WEIGHTED_INT_SEQUENCE\" }, { \"fieldName\": \"F8\", \"fieldType\": \"WEIGHTED_STRING_SEQUENCE\" } ],

\n

\"excludedVariableNames\": [ \"F6\" ] }

" } }, "DataSchemaUri": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The Amazon S3 location of the DataSchema.

" } }, "ResourceRole": { "target": "com.amazonaws.machinelearning#EDPResourceRole", "traits": { "smithy.api#documentation": "

The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see Role templates for data pipelines.

", "smithy.api#required": {} } }, "ServiceRole": { "target": "com.amazonaws.machinelearning#EDPServiceRole", "traits": { "smithy.api#documentation": "

The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

", "smithy.api#required": {} } }, "SubnetId": { "target": "com.amazonaws.machinelearning#EDPSubnetId", "traits": { "smithy.api#documentation": "

The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.

", "smithy.api#required": {} } }, "SecurityGroupIds": { "target": "com.amazonaws.machinelearning#EDPSecurityGroupIds", "traits": { "smithy.api#documentation": "

The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.

", "smithy.api#required": {} } } }, "traits": { "smithy.api#documentation": "

The data specification of an Amazon Relational Database Service (Amazon RDS) DataSource.

" } }, "com.amazonaws.machinelearning#RDSDatabase": { "type": "structure", "members": { "InstanceIdentifier": { "target": "com.amazonaws.machinelearning#RDSInstanceIdentifier", "traits": { "smithy.api#documentation": "

The ID of an RDS DB instance.

", "smithy.api#required": {} } }, "DatabaseName": { "target": "com.amazonaws.machinelearning#RDSDatabaseName", "traits": { "smithy.api#required": {} } } }, "traits": { "smithy.api#documentation": "

The database details of an Amazon RDS database.

" } }, "com.amazonaws.machinelearning#RDSDatabaseCredentials": { "type": "structure", "members": { "Username": { "target": "com.amazonaws.machinelearning#RDSDatabaseUsername", "traits": { "smithy.api#required": {} } }, "Password": { "target": "com.amazonaws.machinelearning#RDSDatabasePassword", "traits": { "smithy.api#required": {} } } }, "traits": { "smithy.api#documentation": "

The database credentials to connect to a database on an RDS DB instance.

" } }, "com.amazonaws.machinelearning#RDSDatabaseName": { "type": "string", "traits": { "smithy.api#documentation": "

The name of a database hosted on an RDS DB instance.

", "smithy.api#length": { "min": 1, "max": 64 } } }, "com.amazonaws.machinelearning#RDSDatabasePassword": { "type": "string", "traits": { "smithy.api#documentation": "

The password to be used by Amazon ML to connect to a database on an RDS DB instance.\n The password should have sufficient permissions to execute the RDSSelectQuery query.

", "smithy.api#length": { "min": 8, "max": 128 } } }, "com.amazonaws.machinelearning#RDSDatabaseUsername": { "type": "string", "traits": { "smithy.api#documentation": "

The username to be used by Amazon ML to connect to database on an Amazon RDS instance.\n The username should have sufficient permissions to execute an RDSSelectSqlQuery query.

", "smithy.api#length": { "min": 1, "max": 128 } } }, "com.amazonaws.machinelearning#RDSInstanceIdentifier": { "type": "string", "traits": { "smithy.api#documentation": "Identifier of RDS DB Instances.", "smithy.api#length": { "min": 1, "max": 63 }, "smithy.api#pattern": "[a-z0-9-]+" } }, "com.amazonaws.machinelearning#RDSMetadata": { "type": "structure", "members": { "Database": { "target": "com.amazonaws.machinelearning#RDSDatabase", "traits": { "smithy.api#documentation": "

The database details required to connect to an Amazon RDS.

" } }, "DatabaseUserName": { "target": "com.amazonaws.machinelearning#RDSDatabaseUsername" }, "SelectSqlQuery": { "target": "com.amazonaws.machinelearning#RDSSelectSqlQuery", "traits": { "smithy.api#documentation": "

The SQL query that is supplied during CreateDataSourceFromRDS. Returns only if Verbose is true in GetDataSourceInput.

" } }, "ResourceRole": { "target": "com.amazonaws.machinelearning#EDPResourceRole", "traits": { "smithy.api#documentation": "

The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to carry out the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

" } }, "ServiceRole": { "target": "com.amazonaws.machinelearning#EDPServiceRole", "traits": { "smithy.api#documentation": "

The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

" } }, "DataPipelineId": { "target": "com.amazonaws.machinelearning#EDPPipelineId", "traits": { "smithy.api#documentation": "

The ID of the Data Pipeline instance that is used to carry to copy data from Amazon RDS to Amazon S3. You can use the ID to find details about the instance in the Data Pipeline console.

" } } }, "traits": { "smithy.api#documentation": "

The datasource details that are specific to Amazon RDS.

" } }, "com.amazonaws.machinelearning#RDSSelectSqlQuery": { "type": "string", "traits": { "smithy.api#documentation": "

The SQL query to be executed against the Amazon RDS database. The SQL query should be valid for the Amazon RDS type being used.

", "smithy.api#length": { "min": 1, "max": 16777216 } } }, "com.amazonaws.machinelearning#RealtimeEndpointInfo": { "type": "structure", "members": { "PeakRequestsPerSecond": { "target": "com.amazonaws.machinelearning#IntegerType", "traits": { "smithy.api#documentation": "

The maximum processing rate for the real-time endpoint for MLModel, measured in incoming requests per second.

" } }, "CreatedAt": { "target": "com.amazonaws.machinelearning#EpochTime", "traits": { "smithy.api#documentation": "

The time that the request to create the real-time endpoint for the MLModel was received. The time is expressed in epoch time.

" } }, "EndpointUrl": { "target": "com.amazonaws.machinelearning#VipURL", "traits": { "smithy.api#documentation": "

The URI that specifies where to send real-time prediction requests for the MLModel.

\n

\n Note: The application must wait until the real-time endpoint is ready before using this URI.

" } }, "EndpointStatus": { "target": "com.amazonaws.machinelearning#RealtimeEndpointStatus", "traits": { "smithy.api#documentation": "

The current status of the real-time endpoint for the MLModel. This element can have one of the following values:

\n " } } }, "traits": { "smithy.api#documentation": "

Describes the real-time endpoint information for an MLModel.

" } }, "com.amazonaws.machinelearning#RealtimeEndpointStatus": { "type": "string", "traits": { "smithy.api#enum": [ { "value": "NONE", "name": "NONE" }, { "value": "READY", "name": "READY" }, { "value": "UPDATING", "name": "UPDATING" }, { "value": "FAILED", "name": "FAILED" } ] } }, "com.amazonaws.machinelearning#Recipe": { "type": "string", "traits": { "smithy.api#length": { "min": 0, "max": 131071 } } }, "com.amazonaws.machinelearning#Record": { "type": "map", "key": { "target": "com.amazonaws.machinelearning#VariableName" }, "value": { "target": "com.amazonaws.machinelearning#VariableValue" }, "traits": { "smithy.api#documentation": "

A map of variable name-value pairs that represent an observation.

" } }, "com.amazonaws.machinelearning#RedshiftClusterIdentifier": { "type": "string", "traits": { "smithy.api#documentation": "

The ID of an Amazon Redshift cluster.

", "smithy.api#length": { "min": 1, "max": 63 }, "smithy.api#pattern": "[a-z0-9-]+" } }, "com.amazonaws.machinelearning#RedshiftDataSpec": { "type": "structure", "members": { "DatabaseInformation": { "target": "com.amazonaws.machinelearning#RedshiftDatabase", "traits": { "smithy.api#documentation": "

Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.

", "smithy.api#required": {} } }, "SelectSqlQuery": { "target": "com.amazonaws.machinelearning#RedshiftSelectSqlQuery", "traits": { "smithy.api#documentation": "

Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource.

", "smithy.api#required": {} } }, "DatabaseCredentials": { "target": "com.amazonaws.machinelearning#RedshiftDatabaseCredentials", "traits": { "smithy.api#documentation": "

Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift database.

", "smithy.api#required": {} } }, "S3StagingLocation": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

Describes an Amazon S3 location to store the result set of the SelectSqlQuery query.

", "smithy.api#required": {} } }, "DataRearrangement": { "target": "com.amazonaws.machinelearning#DataRearrangement", "traits": { "smithy.api#documentation": "

A JSON string that represents the splitting and rearrangement \n processing to be applied to a DataSource. If the DataRearrangement \n parameter is not provided, all of the input data is used to create the Datasource.

\n\n

There are multiple parameters that control what data is used to create a datasource:

\n " } }, "DataSchema": { "target": "com.amazonaws.machinelearning#DataSchema", "traits": { "smithy.api#documentation": "

A JSON string that represents the schema for an Amazon Redshift \n DataSource. The DataSchema\n defines the structure of the observation data in the data file(s)\n referenced in the DataSource.

\n

A DataSchema is not required if you specify a \n DataSchemaUri.

\n

Define your DataSchema as a series of key-value pairs. attributes\n and excludedVariableNames have an array of key-value pairs\n for their value. Use the following format to define your DataSchema.

\n

{ \"version\": \"1.0\",

\n

\"recordAnnotationFieldName\": \"F1\",

\n

\"recordWeightFieldName\": \"F2\",

\n

\"targetFieldName\": \"F3\",

\n

\"dataFormat\": \"CSV\",

\n

\"dataFileContainsHeader\": true,

\n

\"attributes\": [

\n

{ \"fieldName\": \"F1\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F2\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F3\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F4\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F5\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F6\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F7\", \"fieldType\": \"WEIGHTED_INT_SEQUENCE\" }, { \"fieldName\": \"F8\", \"fieldType\": \"WEIGHTED_STRING_SEQUENCE\" } ],

\n

\"excludedVariableNames\": [ \"F6\" ] }

" } }, "DataSchemaUri": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

Describes the schema location for an Amazon Redshift DataSource.

" } } }, "traits": { "smithy.api#documentation": "

Describes the data specification of an Amazon Redshift DataSource.

" } }, "com.amazonaws.machinelearning#RedshiftDatabase": { "type": "structure", "members": { "DatabaseName": { "target": "com.amazonaws.machinelearning#RedshiftDatabaseName", "traits": { "smithy.api#required": {} } }, "ClusterIdentifier": { "target": "com.amazonaws.machinelearning#RedshiftClusterIdentifier", "traits": { "smithy.api#required": {} } } }, "traits": { "smithy.api#documentation": "

Describes the database details required to connect to an Amazon Redshift database.

" } }, "com.amazonaws.machinelearning#RedshiftDatabaseCredentials": { "type": "structure", "members": { "Username": { "target": "com.amazonaws.machinelearning#RedshiftDatabaseUsername", "traits": { "smithy.api#required": {} } }, "Password": { "target": "com.amazonaws.machinelearning#RedshiftDatabasePassword", "traits": { "smithy.api#required": {} } } }, "traits": { "smithy.api#documentation": "

Describes the database credentials for connecting to a database on an Amazon Redshift cluster.

" } }, "com.amazonaws.machinelearning#RedshiftDatabaseName": { "type": "string", "traits": { "smithy.api#documentation": "

The name of a database hosted on an Amazon Redshift cluster.

", "smithy.api#length": { "min": 1, "max": 64 }, "smithy.api#pattern": "[a-z0-9]+" } }, "com.amazonaws.machinelearning#RedshiftDatabasePassword": { "type": "string", "traits": { "smithy.api#documentation": "

A password to be used by Amazon ML to connect to a database on an Amazon Redshift cluster.\n The password should have sufficient permissions to execute a RedshiftSelectSqlQuery query. The password should be valid for an Amazon Redshift USER.

", "smithy.api#length": { "min": 8, "max": 64 } } }, "com.amazonaws.machinelearning#RedshiftDatabaseUsername": { "type": "string", "traits": { "smithy.api#documentation": "

A username to be used by Amazon Machine Learning (Amazon ML)to connect to a database on an Amazon Redshift cluster.\n The username should have sufficient permissions to execute the RedshiftSelectSqlQuery query. The username should be valid for an Amazon Redshift USER.

", "smithy.api#length": { "min": 1, "max": 128 } } }, "com.amazonaws.machinelearning#RedshiftMetadata": { "type": "structure", "members": { "RedshiftDatabase": { "target": "com.amazonaws.machinelearning#RedshiftDatabase" }, "DatabaseUserName": { "target": "com.amazonaws.machinelearning#RedshiftDatabaseUsername" }, "SelectSqlQuery": { "target": "com.amazonaws.machinelearning#RedshiftSelectSqlQuery", "traits": { "smithy.api#documentation": "

The SQL query that is specified during CreateDataSourceFromRedshift. Returns only if Verbose is true in GetDataSourceInput.

" } } }, "traits": { "smithy.api#documentation": "

Describes the DataSource details specific to Amazon Redshift.

" } }, "com.amazonaws.machinelearning#RedshiftSelectSqlQuery": { "type": "string", "traits": { "smithy.api#documentation": "

Describes the SQL query to execute on the Amazon Redshift database. The SQL query should be valid for an Amazon Redshift SELECT. \n

", "smithy.api#length": { "min": 1, "max": 16777216 } } }, "com.amazonaws.machinelearning#ResourceNotFoundException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" }, "code": { "target": "com.amazonaws.machinelearning#ErrorCode" } }, "traits": { "smithy.api#documentation": "

A specified resource cannot be located.

", "smithy.api#error": "client", "smithy.api#httpError": 404 } }, "com.amazonaws.machinelearning#RoleARN": { "type": "string", "traits": { "smithy.api#documentation": "

The Amazon Resource Name (ARN) of an AWS IAM Role, such as the following: arn:aws:iam::account:role/rolename.

", "smithy.api#length": { "min": 1, "max": 110 } } }, "com.amazonaws.machinelearning#S3DataSpec": { "type": "structure", "members": { "DataLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

The location of the data file(s) used by a DataSource. The URI specifies a data file or \n an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

", "smithy.api#required": {} } }, "DataRearrangement": { "target": "com.amazonaws.machinelearning#DataRearrangement", "traits": { "smithy.api#documentation": "

A JSON string that represents the splitting and rearrangement \n processing to be applied to a DataSource. If the DataRearrangement \n parameter is not provided, all of the input data is used to create the Datasource.

\n\n

There are multiple parameters that control what data is used to create a datasource:

\n " } }, "DataSchema": { "target": "com.amazonaws.machinelearning#DataSchema", "traits": { "smithy.api#documentation": "

A JSON string that represents the schema for an Amazon S3 \n DataSource. The DataSchema\n defines the structure of the observation data in the data file(s) \n referenced in the DataSource.

\n

You must provide either the DataSchema or the DataSchemaLocationS3.

\n

Define your DataSchema as a series of key-value pairs. attributes \n and excludedVariableNames have an array of key-value pairs\n for their value. Use the following format to define your DataSchema.

\n

{ \"version\": \"1.0\",

\n

\"recordAnnotationFieldName\": \"F1\",

\n

\"recordWeightFieldName\": \"F2\",

\n

\"targetFieldName\": \"F3\",

\n

\"dataFormat\": \"CSV\",

\n

\"dataFileContainsHeader\": true,

\n

\"attributes\": [

\n

{ \"fieldName\": \"F1\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F2\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F3\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F4\", \"fieldType\": \"NUMERIC\" }, { \"fieldName\": \"F5\", \"fieldType\": \"CATEGORICAL\" }, { \"fieldName\": \"F6\", \"fieldType\": \"TEXT\" }, { \"fieldName\": \"F7\", \"fieldType\": \"WEIGHTED_INT_SEQUENCE\" }, { \"fieldName\": \"F8\", \"fieldType\": \"WEIGHTED_STRING_SEQUENCE\" } ],

\n

\"excludedVariableNames\": [ \"F6\" ] }

" } }, "DataSchemaLocationS3": { "target": "com.amazonaws.machinelearning#S3Url", "traits": { "smithy.api#documentation": "

Describes the schema location in Amazon S3. You must provide either the \n DataSchema or the DataSchemaLocationS3.

" } } }, "traits": { "smithy.api#documentation": "

Describes the data specification of a DataSource.

" } }, "com.amazonaws.machinelearning#S3Url": { "type": "string", "traits": { "smithy.api#documentation": "

A reference to a file or bucket on Amazon Simple Storage Service (Amazon S3).

", "smithy.api#length": { "min": 0, "max": 2048 }, "smithy.api#pattern": "s3://([^/]+)(/.*)?" } }, "com.amazonaws.machinelearning#ScoreThreshold": { "type": "float", "traits": { "smithy.api#box": {} } }, "com.amazonaws.machinelearning#ScoreValue": { "type": "float" }, "com.amazonaws.machinelearning#ScoreValuePerLabelMap": { "type": "map", "key": { "target": "com.amazonaws.machinelearning#Label" }, "value": { "target": "com.amazonaws.machinelearning#ScoreValue" }, "traits": { "smithy.api#documentation": "

Provides the raw classification score corresponding to each label.

" } }, "com.amazonaws.machinelearning#SortOrder": { "type": "string", "traits": { "smithy.api#documentation": "

The sort order specified in a listing condition. Possible values include the following:

\n ", "smithy.api#enum": [ { "value": "asc", "name": "ASC" }, { "value": "dsc", "name": "DSC" } ] } }, "com.amazonaws.machinelearning#StringType": { "type": "string", "traits": { "smithy.api#documentation": "

String type.

" } }, "com.amazonaws.machinelearning#Tag": { "type": "structure", "members": { "Key": { "target": "com.amazonaws.machinelearning#TagKey", "traits": { "smithy.api#documentation": "

A unique identifier for the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.

" } }, "Value": { "target": "com.amazonaws.machinelearning#TagValue", "traits": { "smithy.api#documentation": "

An optional string, typically used to describe or define the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.

" } } }, "traits": { "smithy.api#documentation": "

A custom key-value pair associated with an ML object, such as an ML model.

" } }, "com.amazonaws.machinelearning#TagKey": { "type": "string", "traits": { "smithy.api#length": { "min": 1, "max": 128 }, "smithy.api#pattern": "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-@]*)$" } }, "com.amazonaws.machinelearning#TagKeyList": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#TagKey" }, "traits": { "smithy.api#length": { "min": 0, "max": 100 } } }, "com.amazonaws.machinelearning#TagLimitExceededException": { "type": "structure", "members": { "message": { "target": "com.amazonaws.machinelearning#ErrorMessage" } }, "traits": { "smithy.api#error": "client" } }, "com.amazonaws.machinelearning#TagList": { "type": "list", "member": { "target": "com.amazonaws.machinelearning#Tag" }, "traits": { "smithy.api#length": { "min": 0, "max": 100 } } }, "com.amazonaws.machinelearning#TagValue": { "type": "string", "traits": { "smithy.api#length": { "min": 0, "max": 256 }, "smithy.api#pattern": "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-@]*)$" } }, "com.amazonaws.machinelearning#TaggableResourceType": { "type": "string", "traits": { "smithy.api#enum": [ { "value": "BatchPrediction", "name": "BATCH_PREDICTION" }, { "value": "DataSource", "name": "DATASOURCE" }, { "value": "Evaluation", "name": "EVALUATION" }, { "value": "MLModel", "name": "ML_MODEL" } ] } }, "com.amazonaws.machinelearning#TrainingParameters": { "type": "map", "key": { "target": "com.amazonaws.machinelearning#StringType" }, "value": { "target": "com.amazonaws.machinelearning#StringType" } }, "com.amazonaws.machinelearning#UpdateBatchPrediction": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#UpdateBatchPredictionInput" }, "output": { "target": "com.amazonaws.machinelearning#UpdateBatchPredictionOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Updates the BatchPredictionName of a BatchPrediction.

\n

You can use the GetBatchPrediction operation to view the contents of the updated data element.

" } }, "com.amazonaws.machinelearning#UpdateBatchPredictionInput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the BatchPrediction during creation.

", "smithy.api#required": {} } }, "BatchPredictionName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A new user-supplied name or description of the BatchPrediction.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#UpdateBatchPredictionOutput": { "type": "structure", "members": { "BatchPredictionId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the BatchPrediction during creation. This value should be identical to the value \n of the BatchPredictionId in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of an UpdateBatchPrediction operation.

\n

You can see the updated content by using the GetBatchPrediction operation.

" } }, "com.amazonaws.machinelearning#UpdateDataSource": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#UpdateDataSourceInput" }, "output": { "target": "com.amazonaws.machinelearning#UpdateDataSourceOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Updates the DataSourceName of a DataSource.

\n

You can use the GetDataSource operation to view the contents of the updated data element.

" } }, "com.amazonaws.machinelearning#UpdateDataSourceInput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the DataSource during creation.

", "smithy.api#required": {} } }, "DataSourceName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A new user-supplied name or description of the DataSource that will replace the current description.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#UpdateDataSourceOutput": { "type": "structure", "members": { "DataSourceId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the DataSource during creation. This value should be identical to the value \n of the DataSourceID in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of an UpdateDataSource operation.

\n

You can see the updated content by using the GetBatchPrediction operation.

" } }, "com.amazonaws.machinelearning#UpdateEvaluation": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#UpdateEvaluationInput" }, "output": { "target": "com.amazonaws.machinelearning#UpdateEvaluationOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Updates the EvaluationName of an Evaluation.

\n

You can use the GetEvaluation operation to view the contents of the updated data element.

" } }, "com.amazonaws.machinelearning#UpdateEvaluationInput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the Evaluation during creation.

", "smithy.api#required": {} } }, "EvaluationName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A new user-supplied name or description of the Evaluation that will replace the current content.

", "smithy.api#required": {} } } } }, "com.amazonaws.machinelearning#UpdateEvaluationOutput": { "type": "structure", "members": { "EvaluationId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the Evaluation during creation. This value should be identical to the value \n of the Evaluation in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of an UpdateEvaluation operation.

\n

You can see the updated content by using the GetEvaluation operation.

" } }, "com.amazonaws.machinelearning#UpdateMLModel": { "type": "operation", "input": { "target": "com.amazonaws.machinelearning#UpdateMLModelInput" }, "output": { "target": "com.amazonaws.machinelearning#UpdateMLModelOutput" }, "errors": [ { "target": "com.amazonaws.machinelearning#InternalServerException" }, { "target": "com.amazonaws.machinelearning#InvalidInputException" }, { "target": "com.amazonaws.machinelearning#ResourceNotFoundException" } ], "traits": { "smithy.api#documentation": "

Updates the MLModelName and the ScoreThreshold of an MLModel.

\n

You can use the GetMLModel operation to view the contents of the updated data element.

" } }, "com.amazonaws.machinelearning#UpdateMLModelInput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the MLModel during creation.

", "smithy.api#required": {} } }, "MLModelName": { "target": "com.amazonaws.machinelearning#EntityName", "traits": { "smithy.api#documentation": "

A user-supplied name or description of the MLModel.

" } }, "ScoreThreshold": { "target": "com.amazonaws.machinelearning#ScoreThreshold", "traits": { "smithy.api#documentation": "

The ScoreThreshold used in binary classification MLModel that marks the boundary between a positive prediction and a negative prediction.

\n

Output values greater than or equal to the ScoreThreshold receive a positive result from the MLModel, such as true. Output values less than the ScoreThreshold receive a negative response from the MLModel, such as false.

" } } } }, "com.amazonaws.machinelearning#UpdateMLModelOutput": { "type": "structure", "members": { "MLModelId": { "target": "com.amazonaws.machinelearning#EntityId", "traits": { "smithy.api#documentation": "

The ID assigned to the MLModel during creation. This value should be identical to the value \n of the MLModelID in the request.

" } } }, "traits": { "smithy.api#documentation": "

Represents the output of an UpdateMLModel operation.

\n

You can see the updated content by using the GetMLModel operation.

" } }, "com.amazonaws.machinelearning#VariableName": { "type": "string", "traits": { "smithy.api#documentation": "

The name of a variable. Currently it's used to specify the name of the target value, label, weight, and tags.

" } }, "com.amazonaws.machinelearning#VariableValue": { "type": "string", "traits": { "smithy.api#documentation": "

The value of a variable. Currently it's used to specify values of the target value, weights, and tag variables and for filtering variable values.

" } }, "com.amazonaws.machinelearning#Verbose": { "type": "boolean", "traits": { "smithy.api#documentation": "

Specifies whether a describe operation should return exhaustive or abbreviated information.

" } }, "com.amazonaws.machinelearning#VipURL": { "type": "string", "traits": { "smithy.api#length": { "min": 0, "max": 2048 }, "smithy.api#pattern": "https://[a-zA-Z0-9-.]*\\.amazon(aws)?\\.com[/]?" } }, "com.amazonaws.machinelearning#floatLabel": { "type": "float", "traits": { "smithy.api#box": {} } } } }