// From https://gist.github.com/WoodyAtHome/3ef50b17f0fa2860ac52b97af12f8d15 // Translated from German. We don't need any local time for this use case, and conversion // really requires the TZ DB. const std = @import("std"); pub const DateTime = struct { day: u8, month: u8, year: u16, hour: u8, minute: u8, second: u8 }; pub fn timestamp2DateTime(timestamp: i64) DateTime { // aus https://de.wikipedia.org/wiki/Unixzeit const unixtime = @intCast(u64, timestamp); const SECONDS_PER_DAY = 86400; //* 24* 60 * 60 */ const DAYS_PER_YEAR = 365; //* Normal year (no leap year) */ const DAYS_IN_4_YEARS = 1461; //* 4*365 + 1 */ const DAYS_IN_100_YEARS = 36524; //* 100*365 + 25 - 1 */ const DAYS_IN_400_YEARS = 146097; //* 400*365 + 100 - 4 + 1 */ const DAY_NUMBER_ADJUSTED_1970_01_01 = 719468; //* Day number relates to March 1st */ var dayN: u64 = DAY_NUMBER_ADJUSTED_1970_01_01 + unixtime / SECONDS_PER_DAY; var seconds_since_midnight: u64 = unixtime % SECONDS_PER_DAY; var temp: u64 = 0; // Leap year rules for Gregorian Calendars // Any year divisible by 100 is not a leap year unless also divisible by 400 temp = 4 * (dayN + DAYS_IN_100_YEARS + 1) / DAYS_IN_400_YEARS - 1; var year = @intCast(u16, 100 * temp); dayN -= DAYS_IN_100_YEARS * temp + temp / 4; // For Julian calendars, each year divisible by 4 is a leap year temp = 4 * (dayN + DAYS_PER_YEAR + 1) / DAYS_IN_4_YEARS - 1; year += @intCast(u16, temp); dayN -= DAYS_PER_YEAR * temp + temp / 4; // TagN calculates the days of the year in relation to March 1 var month = @intCast(u8, (5 * dayN + 2) / 153); var day = @intCast(u8, dayN - (@intCast(u64, month) * 153 + 2) / 5 + 1); // 153 = 31+30+31+30+31 Days for the 5 months from March through July // 153 = 31+30+31+30+31 Days for the 5 months from August through December // 31+28 Days for January and February (see below) // +2: Rounding adjustment // +1: The first day in March is March 1st (not March 0) month += 3; // Convert from the day that starts on March 1st, to a human year */ if (month > 12) { // months 13 and 14 become 1 (January) und 2 (February) of the next year month -= 12; year += 1; } var hours = @intCast(u8, seconds_since_midnight / 3600); var minutes = @intCast(u8, seconds_since_midnight % 3600 / 60); var seconds = @intCast(u8, seconds_since_midnight % 60); return DateTime{ .day = day, .month = month, .year = year, .hour = hours, .minute = minutes, .second = seconds }; } pub fn printDateTime(dt: DateTime) void { std.log.debug("{:0>4}-{:0>2}-{:0>2}T{:0>2}:{:0>2}:{:0<2}Z", .{ dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, }); } pub fn printNowUtc() void { printDateTime(timestamp2DateTime(std.time.timestamp())); } test "GMT and localtime" { std.testing.log_level = .debug; std.log.debug("\n", .{}); printDateTime(timestamp2DateTime(std.time.timestamp())); try std.testing.expectEqual(DateTime{ .year = 2020, .month = 8, .day = 28, .hour = 9, .minute = 32, .second = 27 }, timestamp2DateTime(1598607147)); try std.testing.expectEqual(DateTime{ .year = 2020, .month = 11, .day = 1, .hour = 5, .minute = 6, .second = 7 }, timestamp2DateTime(1604207167)); }