const std = @import("std"); const builtin = @import("builtin"); const HandlerFn = *const fn (std.mem.Allocator, []const u8) anyerror![]const u8; const log = std.log.scoped(.lambda); /// Starts the lambda framework. Handler will be called when an event is processing /// If an allocator is not provided, an approrpriate allocator will be selected and used pub fn run(allocator: ?std.mem.Allocator, event_handler: HandlerFn) !void { // TODO: remove inferred error set? const prefix = "http://"; const postfix = "/2018-06-01/runtime/invocation"; const lambda_runtime_uri = std.os.getenv("AWS_LAMBDA_RUNTIME_API") orelse test_lambda_runtime_uri.?; // TODO: If this is null, go into single use command line mode var gpa = std.heap.GeneralPurposeAllocator(.{}){}; defer _ = gpa.deinit(); const alloc = allocator orelse gpa.allocator(); const url = try std.fmt.allocPrint(alloc, "{s}{s}{s}/next", .{ prefix, lambda_runtime_uri, postfix }); defer alloc.free(url); const uri = try std.Uri.parse(url); var client: std.http.Client = .{ .allocator = alloc }; defer client.deinit(); var empty_headers = std.http.Headers.init(alloc); defer empty_headers.deinit(); log.info("tid {d} (lambda): Bootstrap initializing with event url: {s}", .{ std.Thread.getCurrentId(), url }); while (lambda_remaining_requests == null or lambda_remaining_requests.? > 0) { if (lambda_remaining_requests) |*r| { // we're under test log.debug("lambda remaining requests: {d}", .{r.*}); r.* -= 1; } var req_alloc = std.heap.ArenaAllocator.init(alloc); defer req_alloc.deinit(); const req_allocator = req_alloc.allocator(); var req = try client.request(.GET, uri, empty_headers, .{}); defer req.deinit(); req.start() catch |err| { // Well, at this point all we can do is shout at the void log.err("Get fail (start): {}", .{err}); std.os.exit(0); continue; }; // Lambda freezes the process at this line of code. During warm start, // the process will unfreeze and data will be sent in response to client.get req.wait() catch |err| { // Well, at this point all we can do is shout at the void log.err("Get fail (wait): {}", .{err}); std.os.exit(0); continue; }; if (req.response.status != .ok) { // Documentation says something about "exit immediately". The // Lambda infrastrucutre restarts, so it's unclear if that's necessary. // It seems as though a continue should be fine, and slightly faster // std.os.exit(1); log.err("Get fail: {} {s}", .{ @intFromEnum(req.response.status), req.response.status.phrase() orelse "", }); continue; } var request_id: ?[]const u8 = null; var content_length: ?usize = null; for (req.response.headers.list.items) |h| { if (std.ascii.eqlIgnoreCase(h.name, "Lambda-Runtime-Aws-Request-Id")) request_id = h.value; if (std.ascii.eqlIgnoreCase(h.name, "Content-Length")) { content_length = std.fmt.parseUnsigned(usize, h.value, 10) catch null; if (content_length == null) log.warn("Error parsing content length value: '{s}'", .{h.value}); } // TODO: XRay uses an environment variable to do its magic. It's our // responsibility to set this, but no zig-native setenv(3)/putenv(3) // exists. I would kind of rather not link in libc for this, // so we'll hold for now and think on this // if (std.mem.indexOf(u8, h.name.value, "Lambda-Runtime-Trace-Id")) |_| // std.process. // std.os.setenv("AWS_LAMBDA_RUNTIME_API"); } if (request_id == null) { // We can't report back an issue because the runtime error reporting endpoint // uses request id in its path. So the best we can do is log the error and move // on here. log.err("Could not find request id: skipping request", .{}); continue; } const req_id = request_id.?; log.debug("got lambda request with id {s}", .{req_id}); const reader = req.reader(); var buf: [65535]u8 = undefined; var resp_payload = std.ArrayList(u8).init(req_allocator); if (content_length) |len| { resp_payload.ensureTotalCapacity(len) catch { log.err("Could not allocate memory for body of request id: {s}", .{request_id.?}); continue; }; } defer resp_payload.deinit(); while (true) { const read = try reader.read(&buf); try resp_payload.appendSlice(buf[0..read]); if (read == 0) break; } const event_response = event_handler(req_allocator, resp_payload.items) catch |err| { // Stack trace will return null if stripped const return_trace = @errorReturnTrace(); if (return_trace) |rt| log.err("Caught error: {}. Return Trace: {any}", .{ err, rt }) else log.err("Caught error: {}. No return trace available", .{err}); const err_url = try std.fmt.allocPrint(req_allocator, "{s}{s}/runtime/invocation/{s}/error", .{ prefix, lambda_runtime_uri, req_id }); defer req_allocator.free(err_url); const err_uri = try std.Uri.parse(err_url); const content = \\ {s} \\ "errorMessage": "{s}", \\ "errorType": "HandlerReturnedError", \\ "stackTrace": [ "{any}" ] \\ {s} ; const content_fmt = if (return_trace) |rt| try std.fmt.allocPrint(req_allocator, content, .{ "{", @errorName(err), rt, "}" }) else try std.fmt.allocPrint(req_allocator, content, .{ "{", @errorName(err), "no return trace available", "}" }); defer req_allocator.free(content_fmt); log.err("Posting to {s}: Data {s}", .{ err_url, content_fmt }); var err_headers = std.http.Headers.init(req_allocator); defer err_headers.deinit(); err_headers.append( "Lambda-Runtime-Function-Error-Type", "HandlerReturned", ) catch |append_err| { log.err("Error appending error header to post response for request id {s}: {}", .{ req_id, append_err }); std.os.exit(0); continue; }; var err_req = try client.request(.POST, err_uri, empty_headers, .{}); defer err_req.deinit(); err_req.start() catch |post_err| { // Well, at this point all we can do is shout at the void log.err("Error posting response for request id {s}: {}", .{ req_id, post_err }); std.os.exit(0); continue; }; err_req.wait() catch |post_err| { // Well, at this point all we can do is shout at the void log.err("Error posting response for request id {s}: {}", .{ req_id, post_err }); std.os.exit(0); continue; }; // TODO: Determine why this post is not returning if (err_req.response.status != .ok) { // Documentation says something about "exit immediately". The // Lambda infrastrucutre restarts, so it's unclear if that's necessary. // It seems as though a continue should be fine, and slightly faster // std.os.exit(1); log.err("Get fail: {} {s}", .{ @intFromEnum(err_req.response.status), err_req.response.status.phrase() orelse "", }); continue; } log.err("Post complete", .{}); continue; }; // TODO: We should catch these potential alloc errors too // TODO: This whole loop should be in another function so we can catch everything at once const response_url = try std.fmt.allocPrint(req_allocator, "{s}{s}{s}/{s}/response", .{ prefix, lambda_runtime_uri, postfix, req_id }); defer req_allocator.free(response_url); const response_uri = try std.Uri.parse(response_url); const response_content = try std.fmt.allocPrint(req_allocator, "{s} \"content\": \"{s}\" {s}", .{ "{", event_response, "}" }); var resp_req = try client.request(.POST, response_uri, empty_headers, .{}); defer resp_req.deinit(); resp_req.transfer_encoding = .{ .content_length = response_content.len }; try resp_req.start(); try resp_req.writeAll(response_content); // TODO: AllocPrint + writeAll makes no sense try resp_req.finish(); resp_req.wait() catch |err| { // TODO: report error log.err("Error posting response for request id {s}: {}", .{ req_id, err }); continue; }; } } //////////////////////////////////////////////////////////////////////// // All code below this line is for testing //////////////////////////////////////////////////////////////////////// var server_port: ?u16 = null; var server_remaining_requests: usize = 0; var lambda_remaining_requests: ?usize = null; var server_response: []const u8 = "unset"; var server_request_aka_lambda_response: []u8 = ""; var test_lambda_runtime_uri: ?[]u8 = null; var server_ready = false; /// This starts a test server. We're not testing the server itself, /// so the main tests will start this thing up and create an arena around the /// whole thing so we can just deallocate everything at once at the end, /// leaks be damned fn startServer(allocator: std.mem.Allocator) !std.Thread { return try std.Thread.spawn( .{}, threadMain, .{allocator}, ); } fn threadMain(allocator: std.mem.Allocator) !void { var server = std.http.Server.init(allocator, .{ .reuse_address = true }); // defer server.deinit(); const address = try std.net.Address.parseIp("127.0.0.1", 0); try server.listen(address); server_port = server.socket.listen_address.in.getPort(); test_lambda_runtime_uri = try std.fmt.allocPrint(allocator, "127.0.0.1:{d}", .{server_port.?}); log.debug("server listening at {s}", .{test_lambda_runtime_uri.?}); defer server.deinit(); defer test_lambda_runtime_uri = null; defer server_port = null; log.info("starting server thread, tid {d}", .{std.Thread.getCurrentId()}); var arena = std.heap.ArenaAllocator.init(allocator); defer arena.deinit(); var aa = arena.allocator(); // We're in control of all requests/responses, so this flag will tell us // when it's time to shut down while (server_remaining_requests > 0) { server_remaining_requests -= 1; // defer { // if (!arena.reset(.{ .retain_capacity = {} })) { // // reallocation failed, arena is degraded // log.warn("Arena reset failed and is degraded. Resetting arena", .{}); // arena.deinit(); // arena = std.heap.ArenaAllocator.init(allocator); // aa = arena.allocator(); // } // } processRequest(aa, &server) catch |e| { log.err("Unexpected error processing request: {any}", .{e}); if (@errorReturnTrace()) |trace| { std.debug.dumpStackTrace(trace.*); } }; } } fn processRequest(allocator: std.mem.Allocator, server: *std.http.Server) !void { server_ready = true; errdefer server_ready = false; log.debug( "tid {d} (server): server waiting to accept. requests remaining: {d}", .{ std.Thread.getCurrentId(), server_remaining_requests + 1 }, ); var res = try server.accept(.{ .allocator = allocator }); server_ready = false; defer res.deinit(); defer _ = res.reset(); try res.wait(); // wait for client to send a complete request head const errstr = "Internal Server Error\n"; var errbuf: [errstr.len]u8 = undefined; @memcpy(&errbuf, errstr); var response_bytes: []const u8 = errbuf[0..]; if (res.request.content_length) |l| server_request_aka_lambda_response = try res.reader().readAllAlloc(allocator, @as(usize, l)); log.debug( "tid {d} (server): {d} bytes read from request", .{ std.Thread.getCurrentId(), server_request_aka_lambda_response.len }, ); // try response.headers.append("content-type", "text/plain"); response_bytes = serve(allocator, &res) catch |e| brk: { res.status = .internal_server_error; // TODO: more about this particular request log.err("Unexpected error from executor processing request: {any}", .{e}); if (@errorReturnTrace()) |trace| { std.debug.dumpStackTrace(trace.*); } break :brk "Unexpected error generating request to lambda"; }; res.transfer_encoding = .{ .content_length = response_bytes.len }; try res.do(); _ = try res.writer().writeAll(response_bytes); try res.finish(); log.debug( "tid {d} (server): sent response", .{std.Thread.getCurrentId()}, ); } fn serve(allocator: std.mem.Allocator, res: *std.http.Server.Response) ![]const u8 { _ = allocator; // try res.headers.append("content-length", try std.fmt.allocPrint(allocator, "{d}", .{server_response.len})); try res.headers.append("Lambda-Runtime-Aws-Request-Id", "69"); return server_response; } fn handler(allocator: std.mem.Allocator, event_data: []const u8) ![]const u8 { _ = allocator; return event_data; } fn test_run(allocator: std.mem.Allocator, event_handler: HandlerFn) !std.Thread { return try std.Thread.spawn( .{}, run, .{ allocator, event_handler }, ); } fn lambda_request(allocator: std.mem.Allocator, request: []const u8) ![]u8 { var arena = std.heap.ArenaAllocator.init(allocator); defer arena.deinit(); var aa = arena.allocator(); // Setup our server to run, and set the response for the server to the // request. There is a cognitive disconnect here between mental model and // physical model. // // Mental model: // // Lambda request -> λ -> Lambda response // // Physcial Model: // // 1. λ requests instructions from server // 2. server provides "Lambda request" // 3. λ posts response back to server // // So here we are setting up our server, then our lambda request loop, // but it all needs to be in seperate threads so we can control startup // and shut down. Both server and Lambda are set up to watch global variable // booleans to know when to shut down. This function is designed for a // single request/response pair only lambda_remaining_requests = 1; // in case anyone messed with this, we will make sure we start server_remaining_requests = lambda_remaining_requests.? * 2; // Lambda functions // fetch from the server, // then post back. Always // 2, no more, no less server_response = request; // set our instructions to lambda, which in our // physical model above, is the server response defer server_response = "unset"; // set it back so we don't get confused later // when subsequent tests fail const server_thread = try startServer(aa); // start the server, get it ready while (!server_ready) std.time.sleep(100); log.debug("tid {d} (main): server reports ready", .{std.Thread.getCurrentId()}); // we aren't testing the server, // so we'll use the arena allocator defer server_thread.join(); // we'll be shutting everything down before we exit // Now we need to start the lambda framework, following a siimilar pattern const lambda_thread = try test_run(allocator, handler); // We want our function under test to report leaks lambda_thread.join(); return try allocator.dupe(u8, server_request_aka_lambda_response); } test "basic request" { // std.testing.log_level = .debug; const allocator = std.testing.allocator; const request = \\{"foo": "bar", "baz": "qux"} ; // This is what's actually coming back. Is this right? const expected_response = \\{ "content": "{"foo": "bar", "baz": "qux"}" } ; const lambda_response = try lambda_request(allocator, request); defer allocator.free(lambda_response); try std.testing.expectEqualStrings(expected_response, lambda_response); }